
- •В. I. Бондар
- •Введение.
- •Глава I. Химическая термодинамика.
- •1. Основные понятия и величины.
- •2. Первое начало термодинамики.
- •3. Применение первого начала к характеристике идеальных термодинамических процессов.
- •4. Вычисление работы идеальных термодинамических процессов.
- •V1 до объема v2 при различных условиях.
- •Глава II. Теплоемкость.
- •Формы выражения теплоемкости.
- •2. Теплоемкость идеального газа.
- •3. Теплоемкость твердых тел.
- •4. Правило Неймана - Коппа.
- •5. Температурная зависимость теплоемкости.
- •6. Квантовая теория теплоемкости
- •Глава III. Применение первого начала к химическим процессам.
- •Термохимия – раздел термодинамики.
- •2. Связь тепловых эффектов химических реакций при постоянном объеме (qv) и давлении (qp).
- •3. Закон Гесса.
- •4. Следствия из закона Гесса.
- •5. Зависимость теплового эффекта химической реакции от температуры (уравнение Кирхгофа).
- •Глава IV. Второе начало термодинамики.
- •Содержание второго начала термодинамики.
- •2. Обратимые и необратимые процессы.
- •3. Коэффициент полезного действия тепловой машины. Цикл Карно.
- •4. Работа холодильника (теплового насоса).
- •5. Измерение рассеивания энергии. Энтропия.
- •6. Термодинамический взгляд на энтропию.
- •7. Вычисление энтропии.
- •8. Направление протекания процессов в изолированных системах и термодинамические условия равновесия.
- •9. Энергия Гиббса. Энергия Гельмгольца.
- •10. Направление протекания процессов в неизолированных системах и термодинамические условия равновесия.
- •11. Уравнение Гиббса - Гельмгольца.
- •12. Применение второго закона термодинамики к фазовым переходам. Уравнение Клаузиуса - Клапейрона.
- •13. Химическое равновесие. Закон действующих масс и константа равновесия.
- •14. Различные формы констант равновесия и связь между ними.
- •15. Уравнение изотермы химической реакции. Химическое сродство.
- •16. Направление реакций и условие равновесия.
- •17. Зависимость константы равновесия от температуры и давления.
- •18. Равновесие в гетерогенных системах.
- •19. Термическая диссоциация.
- •Глава V. Третий закон термодинамики.
- •Недостаточность I и II законов термодинамики для расчета химического сродства.
- •2. Тепловая теорема Нернста.
- •3. Следствия из тепловой теоремы Нернста.
- •4. Расчет абсолютных значений энтропии.
- •5. Применение таблиц термодинамических функций для расчетов равновесий.
- •Глава VI. Правило фаз.
- •1. Основные понятия и определения.
- •2. Уравнение правила фаз.
- •3. Геометрический образ уравнения состояния.
- •4. Однокомпонентные системы.
- •5. Двухкомпонентные системы.
- •5.1. Системы с неограниченной растворимостью
- •5.2. Системы с неограниченной растворимостью компонентов в жидком состоянии и ограниченной в твердом.
- •6. Трехкомпонентные системы.
- •VII Растворы.
- •1. Общая характеристика растворов и их классификация.
- •2. Закон Рауля.
- •3. Температура замерзания и кипения разбавленных растворов (следствия из закона Рауля).
- •4. Осмотическое давление растворов.
- •5. Закон Генри.
- •6. Закон распределения.
- •7. Парциальные молярные характеристики компонентов раствора.
- •8. Химический потенциал.
- •9. Термодинамика неидеальных растворов.
- •Глава VIII. Теория электролитов.
- •1. Растворы электролитов.
- •2. Теория электролитической диссоциации.
- •3. Сильные и слабые электролиты.
- •4. Электропроводность растворов электролитов.
- •5. Подвижность и числа переноса ионов.
- •Глава IX. Гальванические элементы.
- •1. Возникновение электродвижущих сил.
- •2. Термодинамика гальванического элемента.
- •3. Электродные потенциалы.
- •4. Классификация электродов и гальванических элементов.
- •Глава X. Кинетика гомогенных химических реакций.
- •1. Скорость химической реакции.
- •2. Молекулярность и порядок химической реакции.
- •3. Методы определения порядка химических реакций.
- •4. Сложные реакции.
- •5. Влияние температуры на скорость химических реакций. Энергия активации.
- •6. Теория активных столкновений.
- •7. Теория переходного состояния.
- •XI. Гетерогенные процессы.
- •Глава XII. Цепные реакции.
- •Глава XIII. Поверхностные явления.
7. Парциальные молярные характеристики компонентов раствора.
Свойства раствора характеризуются значениями термодинамических функций H, U, F, G и т. д. Вследствие взаимодействия между молекулами компонентов раствора термодинамические характеристики имеет смысл относить к раствору как к целому, а не к составляющим его веществам. Однако все же важно оценить, какую долю вносит каждый компонент в то или иное свойство раствора. Такая характеристика называется парциальной величиной.
Большинство свойств, поддающихся количественному выражению, может быть разделено на две группы: экстенсивные и интенсивные.
Экстенсивные свойства пропорциональны количеству вещества. К ним относятся, например, заряд, объем, масса, внутренняя энергия, энтропия. Эти свойства системы накапливаются (обладают аддитивностью).
Такие свойства, точнее характеристики свойств, как температура, давление, потенциал, не зависящие от количества вещества, называются интенсивными. Интенсивные свойства различных частей системы стремятся к выравниванию.
Любое экстенсивное свойство раствора (x) зависит от условий его существования и состава:
x = f (P, T, n1, n2, ...), (7.23)
где Р - давление;
Т - температура;
n1, n2, ... - количества компонентов раствора.
Если в условиях Р, Т = const бесконечно мало изменить количества компонентов раствора, то изменение экстенсивного свойства можно определить по правилу нахождения полного дифференциала функции:
,
(7.24)
где
и т.д.
В общем случае:
,
(7.25)
где
- парциальная молярная характеристика
i-го компонента раствора (Г. Н. Льюис).
Таким образом, парциальная молярная характеристика компонента раствора - частная производная от какого-либо экстенсивного свойства раствора по числу молей этого компонента при условии Р, Т = const.
Учитывая (7.25), уравнение (7.24) перепишется в виде:
.
(7.26)
В (7.26) dx - приращение любого экстенсивного свойства раствора при добавлении к нему dn1, dn2 и т. д. чисел молей компонентов раствора.
Величины
,
и т. д. показывают, на сколько изменяется
экстенсивное свойство раствора (x) при
добавлении к раствору 1 моля данного
компонента, при условии, что количества
других компонентов раствора останутся
постоянными.
Интегрирование (7.26) приводит к уравнению вида:
,
(7.27)
показывающее, что любое экстенсивное свойство раствора, например его объем, можно определить, зная состав раствора и парциальные молярные характеристики его компонентов.
Если одновременно изменять состав и количество раствора, то изменение (x) может быть найдено дифференцированием уравнения (7.27):
,
где
,
поэтому
,
(7.28)
а после деления
каждого из слагаемых на
:
,
(7.29)
Уравнения (7.27), (7.28) и (7.29) - уравнения Гиббса - Дюгема, связывающие парциальные молярные характеристики компонентов раствора между собой.
Если в качестве
экстенсивного свойства компонента
раствора выбрать его объем, то парциальный
молярный объем
определяется:
.
(7.30)
Полный объем раствора рассчитывается с использованием (7.27):
.
(7.31)
Парциальный
молярный объем i-го компонента раствора
может быть равен молярному объему i-го
компонента (V0i),
что характерно для идеальных растворов.
Такие растворы образуются без изменения
объема раствора (
V
= 0):
.
(7.32)
Образование
реального раствора сопровождается
изменением объема (),
а его объем рассчитывается в соответствии
с (7.27).
Для случая
образования регулярных растворов
.