
- •А.Л. Ахтулов, л.Н. Ахтулова, с.И. Смирнов основы микропроцессорной техники
- •Содержание
- •Глава 1. Структура, архитектура и функционирование Электонных Вычислительных Машин и микропроцессорных систем
- •1.1. История развития информации и вычислительной техники
- •1.2. Этапы развития электронно-вычислительной техники
- •1.3. Классическая архитектура электронной вычислительной машины и принципы фон Неймана
- •1.4. Архитектура мини-эвм и микропроцессора
- •1.5. Принцип работы микро-эвм
- •Глава 2. Числа, кодирование и арифметические операции
- •2.1. Арифметические основы микропроцессорной техники
- •2.2. Двоичная арифметика
- •2.3. Дополнительный код
- •2.4. Арифметика в дополнительном коде
- •2.5. Группировка бит
- •2.6. Буквенно-цифровой код
- •Глава 3. Основные элементы микропроцессорной техники
- •3.1. Логические элементы
- •3.2. Электронные логические вентили
- •3.3. Комбинации логических элементов
- •3.4. Практическая реализация логических вентилей
- •3.5. Задержка на распространение сигнала
- •3.6. Ограничения по входу и выходу
- •3.7. Тристабильные элементы
- •3.8. Мультиплексор и демультиплексоры
- •3.9. Дешифраторы
- •3.10. Модули интегральных микросхем
- •3.11. Триггеры и защелки
- •3.12. Тактирование фронтом сигнала
- •3.15. Триггеры с дополнительными входами для установки и очистки
- •3.16. Регистры и сдвиговые регистры
- •3.17. Счетчики
- •Глава 4. Программируемые логические устройства
- •4.1. Программируемая логическая матрица
- •4.2. Программируемая матричная логика
- •4.3. Сложные программируемые логические устройства
- •4.4. Программируемые вентильные матрицы
- •4.5. Пример счетчика с прямым/обратным счетом
- •4.6. Временные диаграммы
- •4.7. Модель конечного автомата
- •4.8. Синтез конечных автоматов
- •Глава 5. Полупроводниковая память
- •5.1. Микросхемы rom
- •5.2. Затенение rom
- •5.3. Прожигаемая при изготовлении память rom
- •4.4. Память prom
- •5.5. Память eprom
- •5.6. Системная память
- •5.7. Быстродействие озу
- •5.8. Динамическая и статическая память
- •5.9. Память типа dram
- •5.10. Статическая память
- •5.13. Подсистема памяти
- •5.14. Организация кэш-памяти
- •5.15. Принципы организации основной памяти в современных компьютерах
- •5.16. Виртуальная память и организация защиты памяти
- •5.17. Модули памяти
- •5.18. Использование оперативной и постоянной памяти
- •Глава 6. Основы микропроцессорной техники
- •6.1. Архитектура простой микро-эвм
- •6.2. Структура простейшей памяти
- •6.3. Состав команд
- •6.4. Структура элементарного микропроцессора
- •6.5. Функционирование микро-эвм
- •6.9. Код коррекции ошибок
- •Глава 7. Микропроцессорная система
- •7.1. Классификация
- •7.2. Определение понятия микропроцессор
- •7.3. Основные характеристики микропроцессора
- •7.4. Шинная структура связей
- •7.5. Логическая структура микропроцессора
- •7.6. Режимы работы микропроцессорной системы
- •7.7. Архитектура микропроцессорных систем
- •7.8. Типы микропроцессорных систем
- •Глава 8. Организация обмена информацией
- •8.1. Циклы обмена микропроцессорной системы
- •8.2. Шины микропроцессорной системы
- •8.3. Организация циклов обмена информацией
- •8.4. Прохождение сигналов по магистрали
- •8.5. Функции устройств магистрали
- •Глава 9. Функционирование процессора
- •9.1. Адресация операндов
- •9.2. Регистры процессора
- •9.3. Система команд процессора
- •Глава 10. Организация микроконтроллеров
- •10.1. Процессорное ядро и память микроконтроллеров
- •10.2. Классификация и структура микроконтроллеров
- •10.3. Система команд процессора мк
- •10.4. Схема синхронизации мк
- •10.5. Память программ и данных мк
- •10.6. Порты ввода/вывода
- •Библиографический список
- •Основы микропроцессорной техники
- •Издательство государственного образовательного учреждения высшего профессионального образования
- •625000, Тюмень, ул. Володарского, 38
- •6 25039, Г. Тюмень, ул. Киевская, 52
6.2. Структура простейшей памяти
Запись в память или считывание из нее происходит при наличии доступа в память. Обычно память выполняется с последовательным или произвольным доступом. Последовательный доступ означает, что к требуемым данным нужно последовательно пройти через всю память, расположенную до размещения искомых данных.
В случае произвольного доступа данные могут быть записаны в любую ячейку памяти или считаны из нее за определенное фиксированное время, называемое временем доступа в память. Оперативные и постоянные запоминающие устройства микро-ЭВМ являются устройствами памяти с произвольным доступом, существенно более быстродействующими, чем устройства с последовательным доступом.
Изучаемый тип микро-ЭВМ обладает адресной шиной из 16 линий, которые могут обеспечить 65 536 (216) различных комбинаций 0 и 1. На рис. 6.2 приведено множество двоичных комбинаций. Обычно принято двоичный адрес представлять в шестнадцатеричной форме. Как видно из рис. 6.2, 0000 0000 0000 00002=0000Н (000016).
Рис. 6.2. Адресная система микро-ЭВМ
Напомним, что здесь Н указывает на то, что речь идет о шестнадцатеричной системе счисления (Н-код). Наиболее значимым адресом на рис. 6.2 будет 1111 1111 1111 11112 или FFFFH.
Адресная шина микропроцессора 16-разрядная, она может сформировать 65 536 (0000—FFFFH) индивидуальных адресов. В случае этой специальной микро-ЭВМ первые 256 (00—FFH) ячеек памяти являются содержимым ПЗУ с объемом памяти 256x8 бит (т. е. 256 слов по 8 бит). Если адресная шина формирует адрес 0000Н, ПЗУ передает программированную комбинацию из 0 и 1, содержащуюся в постоянной памяти (слово 1100 0011).
На рис. 6.3 приведены три варианта реализуемых устройств ИС полупроводникового ОЗУ. На рис. 6.3, а единая ИС организована в ОЗУ 256X8 бит, на рис.
Рис. 6.3. Три способа формирования памяти микро-ЭВМ:
а — на одном кристалле; 6—на двух кристаллах: в—на восьми кристаллах
6.3,6 две ИС составляют такую же зону размещения данных и, следовательно, два ОЗУ 256X4 бит позволяют составить слово из 8 бит. Наконец, восемь ОЗУ на рис. 6.3, в формируют также устройство размещения для записи-чтения данных 256X8 бит. Устройство, представленное на рис. 6.3, в, широко используется для составления обширной памяти. Обычно используют ИС ОЗУ 1024X1, 4096X1, 16384X1 бит. Используя способ, показанный на рис. 6.3, в, восемь ОЗУ 4096X1 бит будет достаточно для формирования оперативной памяти 4096X8 бит.
Отметим, что в этом типе конфигурации такие ОЗУ будут активизированы одной и той же линией выбора кристалла, исходящей из дешифратора адресов,
В системе микро-ЭВМ объем памяти (или память 4096X8 бит) составляет 4 Кбайт {4 К=4096ю байт памяти)1.
6.3. Состав команд
Группа команд, которые может выполнять данный МП, называется его составом команд. Состав команд МП может содержать как малое число (восемь), так и большое число (200) основных команд. Составы команд не являются нормализованными. Это неудобство связано как с индивидуальным подходом к разработке, так и с различиями архитектуры и назначений МП.
Имеется много способов классификации команд одного состава. В этой главе согласно нормативам, предложенным научным обществом инженеров-электронщиков, мы изучим следующие команды: арифметические, логические, передачи данных, вызова подпрограмм, возврата из подпрограмм, прочие.
Элементарный МП будет представлен следующим составом арифметических команд: сложение, вычитание, инкрементирование, сравнение, отрицание.
Некоторые конкретные МП могут обладать другими арифметическими командами, такими, как сложение с переносом, вычитание с заемом, умножение и деление.
Элементарный МП наделяется следующими логическими командами: И, ИЛИ, ИЛИ ИСКЛЮЧАЮЩЕЕ, НЕ (отрицание), сдвиг вправо, сдвиг влево.
Некоторые МП, кроме того, наделены такими логическими командами, как арифметический сдвиг вправо, циклические сдвиги вправо и влево, циклические сдвиги вправо и влево с переносом и тестирование.
Наш же элементарный процессор всегда наделяется командами передачи данных: загрузки, размещения, перемещения, ввода, вывода.
Более сложный состав будет содержать команды обмена, сброса и инициализации. Что касается команд ветвления, они следующие: безусловный переход; переход, если нуль; переход, если не нуль; переход, если равенство; переход, если неравенство; переход, если положительно; переход, если отрицательно. Другие команды условных переходов, имеющиеся в некоторых микропроцессорах, могут зависеть от таких условий, как: больше или меньше, сдвиг или нет, переполнение или нет. Команды ветвления являются командами принятия решений.
Элементарный микропроцессор будет наделен командой вызова подпрограммы (обычно CALL—вызов), чтобы программа могла перейти к специальной группе команд, которые решают поставленную задачу. Все МП обладают командой безусловного вызова, а некоторые наделены командой условного вызова, например, CALL, если нуль; CALL, если не нуль; CALL, если положительно или не положительно, и т. д.
В конце выполнения подпрограммы МП должен иметь возможность возврата в точку отправления из начальной программы. Эта операция выполняется командой возврата. Эта команда обычно безусловна, но некоторые МП снабжены и условным возвратом.
Наконец, прочими командами элементарного МП будут: нет операции, поместить в стек, выйти из стека, ожидание, останов.
Возможны и другие команды: прерывания активизации или сброса, останова, десятичной коррекции.
Пользователи микропроцессорных систем встречаются с многочисленными способами выражения одних и тех же команд. Из этого множества приведем команду сложения двух чисел для микропроцессора Motorola 6800. Имя команды является активной формой глагола и называется операцией. В табл. 6.1 выполняемой операцией является сложение.
Таблица 6.1
Операция |
Мнемоника |
КОП |
Символика (все обозначения регистров являются их содержимым) |
Сложить |
ADD A |
8ВН |
А+МА |
Пользователи работают часто с сокращенными формами выражения операции, которые являются обычно мнемоническими. В табл. 6.1 мнемоникой сложения является ADD А (отметим, что мнемоники всегда записываются большими буквами). Регистр команд и схема декодирования понимают только язык нулей и единиц. Код операции (КОП) является шестнадцатеричным представлением 8-разрядного двоичного кода, который заставляет МП выполнить эту команду. В табл. 6.1 КОП для МП Motorola 6800 для ADD А будет 8ВН (1000 10112). В колонке символики в табл. 6.1 показывается, что содержимое памяти (М) складывается с содержимым аккумулятором (А) в МП, стрелка указывает, что результат помещается в аккумулятор А.
На рис. 6.4 приведен пример использования команды сложения ADD А.
Рис. 6.4. Блок-схема команды сложения
Содержимое (А) аккумулятора (0001 11102) складывается с содержимым (М) памяти (0000 11112), сумма (0010 11012) помещается в аккумулятор (справа). Заметим, что содержимое ячейки памяти не изменилось, тогда как содержимое аккумулятора стало другим.