Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
SAEU_kurs_lek..docx
Скачиваний:
61
Добавлен:
03.11.2018
Размер:
4.88 Mб
Скачать

3.6. Работа биполярного транзистора в усилительном каскаде.

До момента t1 на входных клеммах имеется только напряжение смещения, Uвх =0. Поэтому в выходной цепи протекает только постоянная составляющая I. Потенциал коллектора Uк0 определяется выражением Uк0=Е- IRн. В момент t1 во входную цепь поданы Uвх(t) и Ecм парралельно, которые показаны на рис. 3.7. (график 1). Потенциональный барьер эмиттерного прямосмещенного перехода будет меняться по закону Uвх(t), что приведет к изменению тока инжекции Iэ, следовательно, Iк (график 2).

Если напряжение на эмиттерном переходе уменьшается, то уменьшаются Iэ, Iк и наоборот. Таким образом, источник сигнала Uвх(t) небольшой мощности управляет током выходной цепи. В выходную цепь, кроме основного источника питания, включено нагрузочное сопротивление, следовательно, на этом сопротивлении из-за протекания тока будут происходить падения напряжения постоянной Uк0 и переменной Uвых(t) составляющих. В схеме с общим эмиттером Uвых(t) снимается через разделительную емкость С с коллектора, которое равно Uвых(t) =E-iвых(t)Rн (график 3).

Анализируя графики 1 и 3, приходим к выводу, что усилительный каскад с общим эмиттером меняет фазу усиленного сигнала Uвых(t) на 180о

Рис.3.7. Графики напряжений и токов в усилителях:

а – с p-n-p-транзистором; б – с n-p-n-транзистором

3.7. Схемы межкаскадной связи.

Для передачи сигнала от одного каскада к другому применяют различные схемы, называемые схемами межкаскадной связи. Эти схе­мы одновременно служат для подачи питающих напряжений на электро­ды усилительных элементов, а также для придания усилителю опреде­ленных свойств. Существует три вида схем межкаскадной связи: не­посредственная, резисторная и трансформаторная. Название усили­тельного каскада определяется примененной в нем схемой межкаскад­ной связи.

В каскадах со схемами непосредственной межкаскадной связи называют такие схемы, в которых выходной электрод предыдущего каскада соединяется с входным электродом последующего непосредственно (рис.3.8). Основ­ным достоинством каскадов с непосредственной связью является их способность усиливать сигналы с постоянной составляющей. Недос­татком, нарушающим нормальную работу усилителей, является дрейф нуля. К дополнительным недостаткам каскада с непосредственной связью относится трудность согласования потенциальных уровней вы­ходных и входных цепей. Непосредственную связь используют в уси­лителях постоянного тока и в интегральных микросхемах.

Рис.3.8. Схема с непосредственной связи между каскадами

При резисторной (резисторно-емкостной) связи применяется разделительный конденсатор С1, который преграждает путь постоян­ной составляющей напряжения из выходной цепи на вход следующего каскада (рис.З.3). Резисторные каскады свободны от недостатков каскадов с непосредственной связью: они не обладают дрейфом нуля, передаваемым на следующий каскад, и без затруднения позволяют обеспечить необходимые напряжения на усилительных элементах при питании многокаскадного усилителя от одного источника. Резистор­ные каскады обладают хорошей частотной характеристикой, имеют не­большие нелинейные искажения и находят широкое применение.

Рис.3.9. Схема трансформаторной связи

При трансформаторной межкаскадной связи используется тран­сформатор (рис.3.9). Через первичную обмотку трансформатора, включаемую в выходную цепь усилительного элемента, на выходной электрод подается напряжение питания, а ко вторичной присоеди­няют входную цепь следующего каскада. Переменная составляющая вы­ходного тока, проходя через первичную обмотку, создает на ней напряжение сигнала, трансформирующееся во вторичную обмотку и по­дающееся на вход следующего каскада.

Лекция №4

Обеспечение и стабилизация режима работы

усилительного элемента по постоянному току.

4.1. Режим работы усилительного элемента.

Различают активный и ключевой режимы работы усилительного элемента (УЭ). Активный режим используется в АЭУ и соответствует определенному постоянному напряжению или току на управляющем электроде. Это постоянное напряжение называется смещением.

Режим работы УЭ при отсутствии сигнала на его входе называют режимом по постоянному току. В некоторых учебниках этот режим называют статическим или режимом покоя. В этом случае в цепях УЭ протекают только постоянные составляющие токов, определяемые рабочей точкой или точкой покоя. Рабочая точка соответсвует заданному смещению.

При наличии Uвх входного сигнала в цепях УЭ появляются переменные составляющие токов и напряжений, что соответствует режиму по переменному току. Последний различается на режим слабого сигнала (предварительные каскады), когда входной сигнал мал, и режим сильного сигнала (выходной каскад), когда на входе большая амплитуда усиливаемого сигнала.

Режим сильного сигнала в свою очередь подразделяется на режимы А, В, АВ и С.

В режиме А рабочая точка выбирается на середине линейного участка проходной характеристики. При этом ток выходной цепи протекает без отсечки (рис.4.1., а). Ток покоя I0 превышает амплитуду выходного тока Iтвых.

Рис.4.1. Работа усилительного элемента:

а – в режиме А; б – в режиме В

Преимуществом режима А является малый коэффициент нелиней­ных искажений, так как рабочая область характеристики располагается на линейном участке. Недостатком режима А является большой ток , т. е. большое потребление энергии от источника питания, что опре­деляет незначительный коэффициент полезного действия. η=Pвых/P0 , где P0=EI0 - потребляемая мощность

В режиме В рабочая точка выбирается на изгибе проходной характеристики. Ток в выходной цепи существует в течение половины периода, т.е. в режиме В имеет место отсечка выходного тока (рис.4.1., б).

При идеальном режиме В угол отсечки 90. Ток покоя близок к нулю. Однако в действительности из-за нелинейной характе­ристики транзистора Iо оказывается равным 8–10% Imax. Угол отсечки нес­колько превышает 90°. Преимуществом режима В является высокий кпд, недостатком - большой коэффициент нелинейных искажений. Режим В при­меняется в усилителях мощности по двухтактной или симметричной схеме.

Режим С характеризуется углом отсечки меньше 90° , еще большим кпд. Он используется в радиопередающих устройствах.

Ключевым режимом или режимом Д называют такой режим работы усилительного элемента, при котором он во время работы находится только в двух состояниях: в полностью закрытом, когда ток в его выходной цепи отсутствует, или полностью открытом, когда падение напряжения между выходными электродами близко к нулю. В режиме Д можно получить высокий КПД. Ключевой режим применяется в импульсных и цифровых устройствах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]