Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
SAEU_kurs_lek..docx
Скачиваний:
61
Добавлен:
03.11.2018
Размер:
4.88 Mб
Скачать

4.2. Цепи подачи смещения.

Подача смещения может быть реализована с помощью дополнительного источника питания Eсм. Этот способ практически не используется, так как применение двух источников питания нерационально.

В каскадах на электронных лампах и полевых транзисторах используется способ автоматического смещения (см. рис.3.1., 3.3). Элементами автоматического смещения в этих схемах являются Rк и Rи. По переменной составляющей эти резисторы зашунтированы Ск и Си. Следовательно, на этих резисторах происходит падение напряжения Uсм=Iа0Rн=IcoRн. Падение напряжения на R1 отсутствует, так как ток, протекающий по этой цепи равен нулю.

Рассмотрим способы подачи смещения в каскадах на биполярных транзисторах. Для установления необходимого рабочего режима на базу р-n-р транзистора относительно эмиттера нужно подать небольшое отрицательное смещение (0,05-0,5 В). Это смещение желательно получить от источника Eк, чтобы исключить второй источник питания.

Первый способ подачи смещения фиксиро­ванным током базы при помощи гасящего сопротивления R1 показан на рис.4.2,а. R1 и образуют делитель напряжения, причем R1>>rэб. Следовательно, ток смещения в цепи базы определяет­ся только номиналом R1

Iб0к/R1

Этот постоянный ток является смещением. Если смещение необходимо выразить напряжением, то оно определяется как па­дение напряжения Uсм=Iбоrэб.

Рис.4.2. Схемы подачи смещения: а – фиксированным током; б – фиксированным напряжением.

Схема проста (мало элементов), однако имеет следующий недос­таток: при смене транзистора требуется индивидуальный подбор R1. Кроме того, изменение обратного тока сильно влияет на режим работы.

Смещение фиксированным напряжением (рис.4.2,б) достигается с помощью делителя R1R2. Для того, чтобы было постоянным и оп­ределялось только падением напряжения на R2, делитель R1R2 дол­жен быть низкоомным, т.е. R2<<rэб.

В этом случае изменение при замене транзисторов почти не влияет на общее сопротивление , так как параллельное соединение определяется наименьшим сопротивлением R2. Следовательно, напряжение смещения определяется , где ток делителя Iд =Е/(R1 + R2).

Сопротивления R1 и R2 в такой схеме можно рассчитать по следующим формулам:

Этот способ не экономичен, однако находит широкое применение, так как остается постоянным при замене транзистора и измене­нии температуры.

4.3. Стабилизация рабочей точки биполярных транзисторов.

Как известно, все параметры биполярного транзистора имеют сильную темпера­турную зависимости. Если не предусмотреть специальные схемы ста­билизации, то рабочая точка в зависимости от температуры будет передвигаться, что может привести к выходу ее за пределы рабочей области характеристики. Так, например, обратный ток коллектора в сильной степени зависит от окружающей температуры:,

где А - коэффициент, зависящий от технологии производства транзистора.

При увеличении температуры на 10С увеличивается в два раза. Такое явление вызывает изменение коллекторного тока и режима работы. Изменение также может быть вызвано изменением коэффициента усиления и изменением питающих напряжений во времени. Широкое применение находят коллекторная и эмиттерная схемы стабилизации режимов работы транзисторов. Надо отметить, что все схемы стабилизации реализованы с использованием отрица­тельной обратной связи по постоянному току. В схеме коллекторной стабилизации (рис.4.3., а) ток смещения зависит от потенциала коллектора Uк0, который определяется Uк0=Е-IкRн. Если увеличится , то уменьшается ток смешения Iб0=(Е-IкRн)/R1, что приводит к снижению . Процесс автома­тического управления при уменьшении тока коллектора происходит обратным образом. Принцип действия коллекторной стабилизации ос­нован на применении отрицательной обратной связи по напряжению.

Коллекторная стабилизация в случае подачи смещения с помощью делителя объясняется следующим образом: Iд= (Е-IкRн)/(R1 + R2); Uсм= Iд R2

Рис.4.3. Схемы коллекторной стабилизации рабочей точки.

При повышении температуры увеличивается ток коллектора, следовательно, возрастает падение напряжения на сопротивлении нагрузки, вследствие чего уменьшается потенциал коллектора. Это приводит к уменьшению напряжения смещения, следовательно, к уменьшению тока коллектора.

Более высокую стабильность рабочей точки обеспечивает наибо­лее распространенная схема эмиттерной стабилизации (рис. 4.4.).

Напряжение смещения в этой схеме равняется . Принцип действия эмиттерной стабилизации состоит в следующем. До­пустим, за счет повышения температуры в схеме возрастают токи и . При этом растет падение напряжения на , что уменьшает напряжение смещения. Снижение напряжения смещения, в свою оче­редь, ведет к уменьшению токов и . Чтобы исключить обратную связь по переменной составляющей, необходимо зашунтировать большой емкостью .

Рис.4.4. Схема эмиттерной стабилизации рабочей точки

Стабильность рабочей точки повышается при использовании схемы комбини­рованной стабилизации (рис.4.5), в которой объединены оба рас­смотренных способа. Коллекторная стабилизация рабочей точки в этой схеме обеспечивается за счет включения в цепь коллектора элементов развязывающего фильтра. При увеличении температуры увеличивается Iк и падение напряжения IкRф. Вследствие чего уменьшается потенциал точки 1, что приводит к уменьшению напряжения смещения. Следовательно, уменьшается ток коллектора, т.е. происходит стабилизация режима работы транзистора.

Рис.4.5. Схема комбинированной стабилизации рабочей точки.

Когда требуется уменьшить нестабильность тока покоя, вызы­ваемую лишь изменением температуры, используются схемы темпера­турной стабилизации (рис.4.6).

Рис.4.6. Схемы температурной стабилизации:

а – с помощью терморезистора; б – с помощью диода.

В принципиальной схеме усилителя с температурной стабилиза­цией, приведенной на рис. 4.6.а, в нижнем плече делителя устанавливается терморезистор с отрицательным температурным коэффициен­том. При повышении температуры его сопротивление падает, следо­вательно, уменьшается напряжение смещения, что вызывает уменьше­ние токов коллектора и эмиттера.

Температурная стабилизация может быть осуществлена с по­мощью полупроводниковых диодов (рис.4.6.б). С повышением темпера­туры возрастает обратный ток диода, следовательно, возрастает напряжение на сопротивлении и уменьшается напряжение смещения, компенсируя возрастания обратного тока транзистора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]