Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксе.docx
Скачиваний:
13
Добавлен:
02.11.2018
Размер:
39.65 Кб
Скачать

Тема 6 Релятивистская физика: теория относительности

Физика и редукционизм. Физика и наглядность. Теория относительности.

Физика и редукционизм

В этой теме мы дадим как бы моментальную фотографию современного строения мира. Поможет нам одна из наиболее древних и фундаментальных наук — физика. Физика — главная из естественных наук, поскольку в буквальном переводе с греческого слово «фюзис» означает «природа». Стало быть, физика — наука о природе. Физика всегда считалась эталоном научного знания. В каком смысле? Не в том, что она дает наиболее важное и истинное знание, а в том, что открывает истины, справедливые для всей Вселенной, о соотношении нескольких основных переменных. Ее универсальность обратно пропорциональна количеству переменных, которые она вводит в свои формулы.

Как атомы и кварки — «кирпичики» мироздания, так законы физики — «кирпичики» познания. «Кирпичиками» познания законы физики являются не только потому, что в них используются некоторые основные и универсальные переменные и постоянные, действующие во всей Вселенной, но также и потому, что в науке действует принцип редукционизма, гласящий, что все более сложные законы развития более сложных уровней реальности должны быть сводимы к законам более простых уровней.

Скажем, законы воспроизводства жизни в генетике раскрываются на молекулярном уровне как законы взаимодействия молекул ДНК и РНК. Согласованием законов различных областей материального мира занимаются специальные пограничные науки, такие, как молекулярная биология, биофизика, биохимия, геофизика, геохимия и т. д. Очень часто новые науки образуются как раз на стыках более древних дисциплин.

Относительно сферы применимости принципа редукционизма в методологии науки ведутся ожесточенные споры, но само объяснение как таковое всегда предполагает сведения объясняемого на более низкий понятийный уровень. В этом смысле наука просто подтверждает свою рациональность.

Физики утверждают, что ни одно тело во Вселенной не может не подчиняться закону всемирного тяготения, а если его поведение противоречит данному закону, значит вмешиваются другие закономерности. Самолет не падает на землю благодаря своей конструкции и двигателю. Космический корабль преодолевает земное тяготение за счет реактивного топлива и т. п. Ни самолет, ни космический корабль не отрицают закон всемирного тяготения, а используют факторы, которые нейтрализуют его действие.

Можно отрицать законы философии, религию, мистические чудеса, и это признается нормальным. Но с подозрением смотрят на человека, который отрицает законы науки, скажем, закон всемирного тяготения. В этом смысле можно сказать, что законы физики лежат в основании научного постижения действительности.

Физика и наглядность

Два обстоятельства мешают понять современную физику. Во-первых, применение сложнейшего математического аппарата, который надо предварительно изучить. А. Эйнштейн сделал удачную попытку преодолеть эту трудность, написав учебник, в котором нет ни одной формулы. Но есть другое обстоятельство, которое оказывается непреодолимым — невозможность создать наглядную модель современных физических представлений: искривленное пространство; частицу, одновременно являющуюся волной и т. д. Выход из ситуации прост — не надо и пытаться это сделать.

Прогресс физики (и науки в целом) связан с постепенным отказом от непосредственной наглядности. Как будто такой вывод должен противоречить тому, что современная наука и физика прежде всего основывается на эксперименте, т. е. эмпирическом опыте, который проходит при контролируемых человеком условиях и может быть воспроизведен в любое время любое число раз. Но все дело в том, что некоторые стороны реальности незаметны для поверхностного наблюдения и наглядность может ввести в заблуждение. Механика Аристотеля покоилась на принципе: «Движущееся тело останавливается, если сила, его толкающая, прекращает свое действие». Он оказался соответствующим реальности просто потому, что не замечалось, что причиной остановки тела является трение. Для того, чтобы сделать правильный вывод, потребовался эксперимент, который был не реальным экспериментом, невозможным в данном случае, а экспериментом идеальным.

Такой эксперимент провел великий итальянский ученый Галилео Галилей, автор «Диалога о двух главнейших системах мира, птолемеевой и коперниковой» (1632 г.). Для того, чтобы данный мысленный эксперимент стал возможным потребовалось представление об идеально гладком теле и идеально гладкой поверхности, исключающей трение. Эксперимент Галилея, позволивший сделать вывод, что если ничто не будет влиять на движение тела, оно сможет продолжаться бесконечно долго, стал основой классической механики Ньютона (вспомним три закона движения из школьной программы физики). В 1686 году Исаак Ньютон предоставил Лондонскому королевскому обществу свои «Математические начала натуральной философии», в которых сформулировал основные законы движения, закон всемирного тяготения, понятия массы, инерции, ускорения. Так благодаря мысленным экспериментам стала возможной новая механистическая картина мира.

Возможно на знаменитые мысленные эксперименты Галилея подвигло создание гелиоцентрической системы мира выдающимся польским ученым Николаем Коперником (1473-1543), ставшее еще одним примером отказа от непосредственной наглядности. Главный труд Коперника «Об обращении небесных миров» подвел итог его наблюдениям и размышлениям над этими вопросами в течение более 30 лет. Датский астроном Тихо Браге (1546-1601) ради спасения наглядности выдвинул в 1588 году гипотезу, согласно которой вокруг Солнца вращаются все планеты за исключением Земли, последняя неподвижна и вокруг нее обращаются Солнце с планетами и Луна. И только Иоганн Кеплер (1571-1630), установив т ри закона планетарных движений, носящих его имя (первые два - в 1609, третий—в 1618 г.) окончательно подтвердил справедливость учения Коперника.

Итак, прогресс науки Нового времени определили идеализированные представления, порывающие с непосредственной реальностью. Однако, физика XX века заставляет нас отказаться не только от непосредственной наглядности, но и от наглядности как таковой. Это препятствует представлению физической реальности, но позволяет лучше осознать справедливость слов Эйнштейна, что «физические понятия суть свободные творения человеческого разума и не однозначно определены внешним миром» (Эйнштейн А., Инфельд Л. Эволюция физики. - С. 30). «В нашем стремлении понять реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но не имеет средств открыть их корпус. Если он остроумен, он может нарисовать себе некую картину механизма, которая отвечала бы всему, что он наблюдает, но он никогда не может быть вполне уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения» (Там же. - С. 30).

Отказ от наглядности научных представлений является неизбежной платой за переход к исследованию более глубоких уровней реальности, не соответствующих эволюционно выработанным механизмам человеческого восприятия.