Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен. физика.doc
Скачиваний:
3
Добавлен:
28.10.2018
Размер:
989.18 Кб
Скачать
  1. Простра́нство-вре́мя — физическая модель, дополняющая пространство равноправным временны́м измерением и, таким образом, создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. В соответствии с теорией относительности, Вселенная имеет три пространственных измерения и одно временное измерение. Пространство-время непрерывно и с математической точки зрения представляет собой многообразие, которое обычно также наделяют лоренцевой метрикой.

Система отсчёта — это совокупность тела отсчёта, системы координат и системы отсчёта времени, связанных с этим телом, по отношению к которому изучается движение (или равновесие) каких-либо других материальных точек или тел[

  1. Ско́рость (часто обозначается , от англ. velocity или фр. vitesse) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.

Ускоре́ние (обычно обозначается , в теоретической механике ), производная скорости по времени —векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

  1. Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

   

  

Тангенциа́льное ускоре́ние  — компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости. Обозначается обычно  или  

Нормальное ускорение, составляющая ускорения точки при криволинейном движении, направленная по главной нормали к траектории в сторону центра кривизны; Нормальное ускорение называется также центростремительным ускорением. Численно Нормальное ускорение равно v2/r, где v — скорость точки, r — радиус кривизны траектории. При движении по окружности Нормальное ускорение может вычисляться по формуле rw2, где r — радиус окружности, w— угловая скорость вращения этого радиуса. В случае прямолинейного движения Нормальное ускорение равно нулю. 

  1. 1й. Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

2й. В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

3й. Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

  • 5. СИ СГС МКС МКГСС

6.Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив закон инерции: все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся.

При́нцип относи́тельности — фундаментальный физический принцип, согласно которому все физические процессы винерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

7. Зако́н сохране́ния и́мпульса  утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Центр масс (центр ине́рциибарице́нтр ) в механике — это геометрическая точка, характеризующая движение тела или системы частиц как целого.

8. В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения. Этот закон был открыт Ньютоном в 1666 г.. Он гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть:

Здесь G — гравитационная постоянная, равная  м³/(кг с²).

9. Вращением вокруг неподвижной оси называется такое движение твердого тела, при котором во все время движения две его точки остаются неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, по окружностям, центры которых лежат на оси вращения.

Закон вращательного движения:

Проекция вектора угловой скорости на ось и определяется зависимостью:

Угловая скорость ω рад/сек связана с числом оборотов в минуту n зависимостями:

Проекция вектора угловой скорости на ось u определяется зависимостью

Скорость и ускорение точки М вращающегося твердого тела определяются соотношениями (рис. 1):

или в скалярной форме:

Частные случаи:

1) равномерное вращение (ε=0):

2) равнопеременное вращение (εu=const):

10. Момент силы (синонимы: крутящий момент; вращательный момент; вертящий момент; вращающий момент) — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движениивокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества

Теоре́ма Гю́йгенса — Ште́йнера,: момент инерции тела I относительно произвольной оси равен сумме момента инерции этого тела Ic относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Inew = Ic + md2,

где

m — масса тела,

d — расстояние между осями.

11. Согласно уравнению (5.8) второй закон Ньютона для вращательного движения

По определению угловое ускорение  и тогда это уравнение можно

переписать следующим образом

с учетом (5.9)

или

(5.10)

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента  всех внешних сил, действующих на это тело.

12. Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

13. Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

 — средняя мощность

 — мгновенная мощность

Работа переменной силы  Пусть тело движется прямолинейно с равномерной силой под углом £ к направлению перемещения и проходит расстояние S/ Работой силы F называется скалярная физическая величина, равная скалярному произведению вектора силы на вектора перемещения. A=F·s·cos £. А=0, если F=0, S=0, £=90º. Если сила непостоянная (изменяется), то для нахождения работы следует разбивать траекторию на отдельные участки. Разбиение можно производить до тех пор, пока движение не станет прямолинейным, а сила постоянной │dr│=ds.. Работа, совершенная силой на данном участке определяется по представленной формуле dA=F· dS· cos £= = │F│·│dr│· cos £=(F;dr)=Ft·dS A=F·S· cos £=Ft·S . Таким образом работа переменной силы на участке траектории равна сумме элементарных работ на отдельных малых участках пути A=SdA=SFt·dS= =S(F·dr). 

14. Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения.

Единица измерения в системе СИ — Джоуль.

Потенциальная энергия  — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[1]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в СИ является Джоуль.

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергияизолированной физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую

15. Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить:

Если тело вращается вокруг неподвижной оси с угловой скоростью , то линейная скорость i-ой точки равна , где , - расстояние от этой точки до оси вращения. Следовательно.

(5.11)

где  - момент инерции тела относительно оси вращения.

В общем случае движение твердого тела можно представить в виде суммы двух движений - поступательного со скоростью, равной скорости  центра инерции тела, и вращения с угловой скоростью  вокруг мгновенной оси, проходящей через центр инерции. При этом выражение для кинетической энергии тела преобразуется к виду

(5.12)

где  - момент инерции тела относительно мгновенной оси вращения, проходящей через центр инерции.

16.

17. Уравнение неразрывности :

VS - const

Уравнение неразрывности : для идеальной жидкости в стационарных условиях произведение скорости на поперечное сечение трубки тока остается неизменным в любом сечении трубки.

Вывод: из уравнения неразрывности следует, что в более узком сечении трубки тока скорость должна быть больше, чем в более широком сечении.

18. Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

 — плотность жидкости,

 — скорость потока,

 — высота, на которой находится рассматриваемый элемент жидкости,

 — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,

 — ускорение свободного падения.

Константа в правой части обычно называется напором, или полным давлением, а также интегралом Бернулли. Размерность всех слагаемых — единица энергии, приходящейся на единицу объёма жидкости.

19. На тело, движущееся в жидкости или газе, действуют две силы (равнодействующую их обозначим R), одна из которых (Rx) направлена в сторону, противоположную движению тела (в сторону потока), ≈ лобовое сопротивление,а вторая (Ry) перпен╜дикулярна этому направлению ≈ подъемная сила (рис. 55).

Если тело симметрично и его ось симметрии совпадает с направлением скорости, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать, что в идеальной жидкостиравномерное движение происходит без лобового сопротивления. Если рассмотреть движение цилиндра в такой жидкости (рис. 56), то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. с. результирующая сила давления на поверхность цилиндра будет равна нулю.

20. Термодинамические параметры

Параметры состояния

Термодинамические параметры - температура, плотность, давление, объем, удельное электрическое сопротивление и другие физические величины:  - однозначно определяющие термодинамическое состояние системы;  - не учитывающие молекулярное строение тел; и  - описывающие их макроскопическое строение.

21. Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекулможно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

22. Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнениеКлапейрона  Менделеева) — формула, устанавливающая зависимость между давлением,молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

где

  •  — давление,

  •  — молярный объём,

  •  — универсальная газовая постоянная

  •  — абсолютная температура,К

Так как , где  — количество вещества, а , где  — масса,  — молярная масса, уравнение состояния можно записать:

23. Универса́льная га́зовая постоя́нная — термин, впервые введённый в употребление Д. Менделеевым в 1874 г. Численно равна работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К.

Универсальная газовая постоянная более удобна при расчетах, когда число частиц задано в молях.

24. , где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i— число степеней свободы молекул (i = 3 в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давлениеобъёмтемпература) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

25.

26. В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с законом распределения Больцмана:

n = n0exp( -mgh / kT )

где n - концентрация молекул на высоте hn0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

27.

28. Переноса явления, кинетические процессы, необратимые процессы, в результате которых в физической системе происходит пространственный перенос электрического заряда, массы, импульса, энергии, энтропии или какой-либо др. физической величины. Переноса явления описываются кинетическими уравнениями (см. Кинетика физическая).   Причины Переноса явления— действие внешнего электрического поля, наличие пространственных неоднородностей состава, температуры или средней скорости движения частиц системы. Перенос физической величины происходит в направлении, обратном градиенту этой величины. Переноса явления приближают систему к состоянию равновесия.   К Переноса явления относятся: электропроводность  перенос электрического заряда под действием внешнего электрического поля; диффузия  перенос вещества (компонента смеси) при наличии в системе градиента его концентрации; теплопроводность  перенос теплоты вследствие градиента температуры; вязкое течение (см.Вязкость)  перенос импульса, связанный с градиентом средней массовой скорости. Перенос вещества вследствие градиента температуры — термодиффузию и обратный ей Дюфура эффект, гальваномагнитные явления итермомагнитные явления называются перекрёстными процессами, так как здесь градиент одной величины вызывает перенос др. физической величины. При определённых условиях для перекрёстных процессов выполняется Онсагера теорема.

29. Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

где

  •  — подведённая к телу теплота, измеренная в джоулях

  • [1] — работа, совершаемая телом против внешних сил, измеренная в джоулях

Эта формула является математическим выражением первого начала термодинамики

30. Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин.

Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

31. Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельной теплоёмкостью называется количество теплоты, которое необходимо для нагревания единичного количества вещества на один (1) градус. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

32. Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца[1]. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источниковэнергии. Первое начало термодинамики часто формулируют как невозможность существованиявечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

  • ри изобарном процессе

  • при изохорном процессе (A = 0)

  • при изотермическом процессе (ΔU = 0)

Здесь  — масса газа,  — молярная масса газа,  — молярная теплоёмкость при постоянном объёме,  — давление,объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.

33. Адиабатический процесс — термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии.

Для адиабатического процесса первое начало термодинамики в силу отсутствия теплообмена (ΔQ = 0) системы со средой имеет вид

где:

  •  — изменение внутренней энергии тела,

  •  — работа, совершаемая системой

  •  — теплота, полученная системой

34.

35. В теории идеального газа потенциальная энергия взаимодействия молекул считается равной нулю. Поэтому внутренняя энергия идеального газа определяется кинетической энергией движения всех его молекул. Средняя энергия движения одной молекулы равна

Так как в одном киломоле содержится  молекул, то внутренняя энергия одного киломоля газа будет

Учитывая, что  , получим

Для любой массы m газа, т.е. для любого числа киломолей  внутренняя энергия

(10.12)

Из этого выражения следует, что внутренняя энергия является однозначной функцией состояния и, следовательно, при совершении системой любого процесса, в результате которого система возвращается в исходное состояние, полное изменение внутренней энергии равно нулю. Математически это записывается в виде тождества

36. Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.

Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объем. Состояние реального газа часто на практике описывается обобщенным уравнением Менделеева — Клапейрона:

где p — давление; V - объем T — температура; Zr = Zr (p,T)  — коэффициент сжимаемости газа; m - масса; М — молярная масса; R — газовая постоянная.

37. Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основныетермодинамические величины в модели газа Ван-дер-Ваальса.

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлениемобъёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где

  • p — давление,

  • V — молярный объём,

  • T — абсолютная температура,

  • R — универсальная газовая постоянная.

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка a учитывает силы притяжения между молекулами (давление на стенку уменьшается, т.к. есть силы, втягивающие молекулы приграничного слоя внутрь), поправка b — силы отталкивания (из общего объёма вычитаем объём, занимаемый молекулами).

Для ν молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

где

  • V — объём,

38. Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул, которая определяет внутреннюю энергию идеального газа и потенциальную энергию межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ

39. Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Молекулы поверхностного слоя сильнее взаимодействуют с молекулами жидкости(их больше) чем с молекулами пара над поверхностью жидкости и соответственно втягиваются внутрь жидкости(но там занято! Т.О. поверхностный слой создает т.наз. молекулярное давление.  Толщина слоя - радиус межмолекулярного взаимодействия. 

40. Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

41. Сма́чивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкости. Смачивание бывает двух видов:

  • Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью)

  • Контактное (состоит из трёх фаз — твердая, жидкая, газообразная)

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Если жидкость контактирует с твёрдым телом, то существуют две возможности:

  1. молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведёт себя ртуть на стеклевода на парафине или «жирной» поверхности. В этом случае говорят, что жидкость не смачивает поверхность;

  2. молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведёт себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность.

42. Капиллярные явления, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К Капиллярные явления относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Dp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1 — p2. = 2s12/r, где (s12 — поверхностное натяжение на границе двух сред; p1 и p2 — давления в жидкости 1 и контактирующей с ней среде (фазе) 2. В случае вогнутой поверхности жидкости (r < 0) давление в ней понижено по сравнению с давлением в соседней фазе: p1 < p2 и Dp < 0. Для выпуклых поверхностей (r > 0) знак Dp меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела (r = ¥) такая составляющая отсутствует и Dp = 0.   Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).

43. Твёрдое тело — это агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов, которые совершают малые колебания около положений равновесия. 

Свойства: деформация, плавление.

44. Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системысохраняется.

45. Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними

46. Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами(при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующаяэлектрическое поле в данной точке и численно равная отношению силы  действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q:

.

Также иногда называется силовой характеристикой электрического поля.

Математически зависимость вектора  от координат пространства само задаёт векторное поле.

Модуль напряжённости электрического поля в СИ измеряется в В/м (Вольт на метр).

47. Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности NE.

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где  - угол между силовой линией и нормалью  к площадке dS;  - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

(13.4)

Так как  , то

(13.5)

где  - проекция вектора  на нормаль и к поверхности dS.

Фо́рмула Острогра́дского — формула, которая выражает поток векторного поля через замкнутую поверхность интегралом отдивергенции этого поля по объёму, ограниченному этой поверхностью:

то есть интеграл от дивергенции векторного поля , распространённый по некоторому объёму T, равен потоку вектора через поверхность S, ограничивающую данный объём.

48. Вычислим работу при перемещении электрического заряда в однородном электрическом поле с напряженностью  . Если перемещение заряда происходило по линии на пряженности поля на расстояние Ad = d1-d2 (рис. 110), то работа равна

где d1 и d2 — расстояния от начальной и конечной точек до пластины В.

В механике было показано, что при перемещении между двумя точками в гравитационном поле работа силы тяжести не зависит от траектории движения тела. Силы гравитационного и электростатического взаимодействия имеют одинаковую зависимость от расстояния, векторы сил направлены вдоль прямой, соединяющей взаимодействующие точечные тела. Отсюда следует, что и при перемещении заряда в электрическом поле из одной точки в другую работа сил электрического поля не зависит от траектории' его движения.

При изменении направления перемещения на 180° работа сил электрического поля, как и работа силы тяжести, изменяет знак на противоположный. Если при перемещении заряда q из точки В в точку С силы электрического поля совершили работу А, то при перемещении зарядаq по тому же самому пути из точки С в точку В они совершают работу — А. Но так как работа не зависит от траектории, то и при перемещении по траектории СКВ тоже совершается работа — А. Отсюда следует, что при перемещении заряда сначала из точки В в точку С, а затем из точки С в точку В, т. е. по замкнутой траектории, суммарная работа сил электростатического поля оказывается равной нулю (рие.111).

Работа сил электростатического поля при движении электрического заряда по любой замкнутой траектории равна нулю.

Поле, работа сил которого по любой замкнутой траектории равна нулю, называетсяпотенциальным полем. Гравитационное и электростатическое поля являются потенциальными полями.

49. Эквипотенциальная поверхность — понятие, применимое к любому потенциальному векторному полю, например, к статическому электрическому полю или к ньютонову гравитационному полю (Гравитации). Эквипотенциальная поверхность — это поверхность, на которой скалярный потенциал данного потенциального поля принимает постоянное значение. Другое, эквивалентное, определение — поверхность, в любой своей точке ортогональнаясиловым линиям поля.

Поверхность проводника в электростатике является эквипотенциальной поверхностью. Кроме того, помещение проводника на эквипотенциальную поверхность не вызывает изменения конфигурации электростатического поля. Этот факт используется в методе изображений, который позволяет рассчитывать электростатическое поле для сложных конфигураций.

50. Электрическое поле характеризуется двумя физическими величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика). Выясним как они связаны между собой. Пусть положительный заряд q перемещается силой электрического поля с эквипотенциальной поверхности, имеющей потенциал  , на близко расположенную эквипотенциальную поверхность, имеющую потенциал  (рис. 13.16).

Напряженность поля Е на всем малом пути dx можно считать постоянной. Тогда работа перемещения  С другой стороны  . Из этих уравнений получаем

(13.22)

Знак минус обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, тогда как градиент потенциала направлен в сторону возрастания потенциала.

51. Проводники и диэлектрики

По электрическим свойствам тела можно разделить на проводники и диэлектрики.Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. Способность проводников пропускать через себя электрические заряды объясняется наличием в них свободных носителей заряда. Примерами проводников могут служить металлические тела в твердом и жидком состоянии, жидкие растворы электролитов.

Диэлектриками, или изоляторами, называются такие тела, через которые электрические заряды не могут переходить от заряженного тела -к незаряженному. К диэлектрикам, например, относятся воздух и стекло, плексиглас и эбонит, сухое дерево и бумага.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей под воздействием внешнего электрического поля. Поляризацию диэлектриков характеризует векторэлектрической поляризации. Физический смысл электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика.

Поляризация диэлектрика — состояние диэлектрика, которое характеризуется наличием электрического момента у любого элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего элект

52. Рассмотрим диэлектрическую пластинку, заполняющую плоский конденсатор (рис.14.5) и находящуюся, следовательно, в практически однородном внешнем поле  .

В результате поляризации на гранях диэлектрика, обращенных к пластинам конденсатора, концы молекулярных диполей окажутся нескомпенсированными соседними диполями. Поэтому на правой грани, обращенной к отрицательной пластине конденсатора, окажется избыток положительного заряда с некоторой поверхностной плотностью  . На противоположной стороне диэлектрика  . Эти так называемые поляризационные, или связанные заряды не могут быть переданы соприкосновением другому телу без разрушения молекул диэлектрика, т.к. они обусловлены самими поляризованными молекулами. Возникновение поляризованных зарядов приводит к возникновению дополнительного электрического поля  , направленного против внешнего поля  . Результирующее электрическое поле Е внутри диэлектрика равно

(14.2)

Для определения  применим формулу вычисления напряженности  конденсатора

(14.3)

Свяжем  с вектором поляризации Р. Для этого определим полный дипольный момент (во всем объеме) диэлектрика. Осуществим это двумя способами:

С одной стороны Р по определению дипольный момент единицы объема и если умножим на V, получим полный дипольный момент

(14.4)

где S - площадь пластины конденсатора.

С другой стороны рассмотрим диэлектрик как большой диполь, у которого с одной стороны заряд  , а с другой  и расстояние d. Отсюда

(14.5)

Приравнивая (14.4) и (14.5), получим

Подставляя  в (14.3), и затем результат в (14.2), получим

Подставим значение Р из выражения (14.1), тогда

(14.6)

Величина

(14.7)

называется диэлектрической проницаемостью или относительной диэлектрической проницаемостью. Диэлектрическая проницаемость  показывает во сколько раз уменьшается напряженность в диэлектрике по сравнению с напряженностью в вакууме.  и  , т.е. с ростом температуры диэлектрические свойства ухудшаются.

53. Пьезоэлектри́ческий эффе́кт — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует иобратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля.

Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах— пьезоэлектриках. Прямой эффект открыт братьями Жаком и Пьером Кюри в 1880 г.[1]Обратный эффект был предугадан в 1881 г. Липпманом на основе термодинамических соображений и в том же году экспериментально подтверждён братьями Кюри.

Прямой пьезоэффект используется:

  • в пьезозажигалках, для получения высокого напряжения на разряднике;

  • в датчиках в качестве чувствительного к силе элемента (чем больше сила, тем выше напряжение на контактах);

  • в качестве чувствительного элемента в микрофонах;

  • в контактном пьезоэлектрическом взрывателе (например к выстрелам РПГ-7).

54. Электрическая ёмкость — характеристика проводника, мера его способности накапливатьэлектрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

 где Q — зарядU — потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса R равна (в системе СИ):

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком — конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S — площадь одной обкладки (подразумевается, что они равны), d — расстояние между обкладками,ε — относительная диэлектрическая проницаемость среды между обкладками, ε0 = 8.854×10−12 Ф/м —электрическая постоянная.

55. Энергия электростатического поля - это энергия системы неподвижных точечных зарядов, энергия уединенного заряженного проводника и энергия заряженного конденсатора.

Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:

Энергия электростатического поля системы точечных зарядов равна: 

Плотность энергии — количество энергии на единицу массы, или единицу объёма.

При линейной деформации плотность энергии, запасаемая упругим телом, равна:

где  — тензор деформации, τij — тензор напряженийcijkl — тензор упругости.

В простейшем случае (сжатие-растяжение) плотность упругой энергии равна

где  — относительная деформация, E — модуль Юнга.

56. Сила тока (часто просто «ток») в проводнике — скалярная величина, численно равная заряду , протекающему в единицу времени  через сечение проводника. Обозначается буквой  (в некоторых курсах — . Не следует путать с векторной плотностью тока ):

Основной формулой, используемой для решения задач, является Закон Ома:

  • для участка электрической цепи:

 — сила тока равняется отношению напряжения к сопротивлению.

  • для полной электрической цепи:

 — где E — ЭДС, R — внешнее сопротивление, r — внутреннее сопротивление.

Напряжение  разность значений потенциала в начальной и конечнойточках траектории.

 Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.         

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительногозаряда вдоль контура.

57.

Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.

Закон Ома записывается формулой:

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

58. Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Применение правил Кирхгофа к цепи позволяет получитьсистему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи. Сформулированы Густавом Кирхгофом в 1845 году.

Первый закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

.

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений ;

для переменных напряжений 

59. Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцом[1].

В словесной формулировке звучит следующим образом[2]

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:

где w — мощность выделения тепла в единице объёма,  — плотность электрического тока,  — напряжённость электрического поляσ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах[3]:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

В математической форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dtI — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

60. Исходя из представлений о свободных электронах, Друде разработал классическую теорию электропроводности металлов, которая затем была усовершенствована Лоренцем. Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь  . Правда в отличие от молекул газа , пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле  . Для комнатной температуры ( 300К) вычисление по этой формуле приводит к следующему значению:  . При включении поля на хаотическое тепловое движение, происходящее, со скоростью  , накладывается упорядоченное движение электронов с некоторой средней скоростью  . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью  :

(18.1)

Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм2 = 107 А/м2. Взяв для n=1029 м-3, получим

Таким образом, даже при больших плотностях тока средняя скорость упорядоченного движения зарядов в 108 раз меньше средней скорости теплового движения  .

61. Проводники (а) — у этих материалов запрещенная зона практически отсутствует. Валентная зона вплотную прилегает к зоне проводимости или даже перекрывается ею,  вследствие чего электроны в металле свободны и под влиянием  слабых напряженностей приложенного электрического поля могут переходить из валентной (заполненной) зоны в зону проводимости.

Удельное электрическое сопротивление проводников v<10-5 Ом•м.

Отличительное свойство проводников —  сильно выраженная электропроводность.

Полупроводники (в) — вещества с шириной запрещенной зоны < 3 эВ,  10-5 Ом•м < v < 108 Ом•м.

Отличительное свойство полупроводников — сильная зависимость удельной проводимости от концентрации и вида примесей и дефектов в материале, а также от внешних воздействий (температуры, света, электрических и магнитных полей).

Диэлектрики (г)- вещества, имеющие самую широкую запрещенную зону (более 3 эВ) и  большое удельное электрическое сопротивление (v > 108 Ом•м). У некоторых диэлектриков запрещенная зона может быть настолько велика, что электронная электропроводность не играет определяющей роли.

Отличительное свойство — способность к поляризации и возможность существования в этих материалах электростатического поля.

В полупроводниках и диэлектриках при 0 К все электроны находятся в валентной зоне. Для появления электропроводности необходимо часть электронов из валентной зоны перевести в зону проводимости. Энергии электрического поля для этого может оказаться недостаточным и требуется более сильное энергетическое воздействие, например нагревание твердого тела. Тогда часть электронов «перебрасывается» (через запрещенную зону) из валентной зоны в зону проводимости и, становясь свободными, электроны могут перемещаться под действием электрического поля, создавая электронную проводимость материала.

В валентной зоне, откуда ушел электрон, образуется так называемая «дырка» - энергетическая вакансия, которая ведет себя во внешнем электрическом поле как положительный заряд, то есть двигается в электрическом поле в противоположную от электрона сторону и в полупроводнике происходит эстафетное движение электронов, заполняющих образующиеся дырки.

Электроны из зоны проводимости могут возвращаться в валентную зону, то есть рекомбинировать с дырками. В связи с этим при любой температуре  наступает динамическое равновесие — количество электронов переходящих в свободную зону равно количеству электронов, возвращающихся в нормальное состояние (валентную зону).

62. Магни́тная инду́кция  — векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Показывает, с какой силой  магнитное поле действует на заряд , движущийся со скоростью .

Более точно,  — это такой вектор, что сила Лоренца , действующая на заряд , движущийся со скоростью , равна

где α — угол между векторами скорости и магнитной индукции.

Также магнитная индукция может быть определена как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Является основной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах(Тл)

1 Тл = 104 Гс

Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

 Сила , с которой магнитное поле действует на элемент  проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины  проводника на магнитную индукцию :

.

63. Закон Био́—Савара—Лапла́са — физический закон для определения модуля векторамагнитной индукции в любой точке магнитного поля, порождаемого постоянным электрическим током на некотором рассматриваемом участке. Был установлен экспериментально в 1820 годуБио и СаваромЛаплас проанализировал данное выражение и показал, что с его помощью путёминтегрирования можно вычислить магнитное поле движущегося точечного заряда, если считать движение одной заряженной частицы током.

Пусть постоянный ток I течёт по контуру γ, находящемуся в вакууме,  — точка, в которой ищется поле, тогда индукция магнитного поля в этой точке выражается интегралом (в системе СИ)

Направление  перпендикулярно плоскости, в которой лежат вектора  и . Направление вектора магнитной индукции может быть найдено по правилу правого винта: направление вращения головки винта дает направление , если поступательное движение буравчика соответствует направлению тока в элементе. Модуль вектора  определяется выражением (в системе СИ)

Векторный потенциал даётся интегралом (в системе СИ)

Дифференциальная форма закона Био-Савара может быть представлена (в гауссовой системе единиц) в виде

где  — плотность тока. Её вывод основан непосредственно на использовании интегральной формы. Она является частным случаемуравнений Максвелла для постоянного магнитного поля в вакууме.

64. Магнитное взаимодействие параллельных проводников с током также иллюстрирует наличие магнитных полей вокруг каждого из них. Закон взаимодействия параллельных проводников с токами установил в 1820 году Ампер. Эта сила прямо пропорциональная произведению токов и обратно пропорциональная расстоянию между проводниками. Закон взаимодействия позволяет определить одну из основных единиц международной системы - Ампер. Согласно к такому определению: Ампер является такой силой тока, при которой два одинаковых параллельных проводника с током на расстоянии один метр один от другого взаимодействуют в вакууме с силой, - Н/г.

Если рассматривать виток с током (рамку с током) как источник магнитного поля, то нетрудно понять, что вектор магнитного поля в точке наблюдения расположен в направлении оси . Если расстояние точки от плоскости витка обозначить как, то индукция магнитного поля в этой точке может быть получена из закона Био-Савара-Лапласа.

За условия, где - радиус витка, а - его площадь, переходит в полученный нами раньше выражение для поля кругового тока. При обратном условии(вдалеке от витку) магнитное поле спадает обратно пропорциональный. Соленоидом называют бесконечно длинные катушки (или по крайней мере такие, для которых диаметр и длина отвечают требованию. Силовые линии магнитного поля в середине катушки (эта область выделена прямоугольником) почти параллельны друг друга и мало отличаются от прямых линий.

65. поток вектора магнитной индукции, пронизывающий площадку S - это величина, равная:

Поток вектора магнитной индукции (магнитный поток) измеряется в веберах (Вб)

 

Магнитный поток - величина скалярная.

Поток вектора магнитной индукции (магнитный поток) равен числу линий магнитной индукции, проходящих сквозь данную поверхность.

Поток вектора магнитной индукции (магнитный поток) сквозь произвольную замкнутую поверхность равен нулю:

Это теорема Остроградского-Гаусса для магнитного поля.

Она свидетельствует о том, что в природе не существует магнитных зарядов – физических объектов, на которых бы начинались или заканчивались линии магнитной индукции.