
- •1) Концепции естествознания – основа научного миропонимания. Связь естествознания с экономикой, управлением, нашей специальностью.
- •2) Гуманитарные, фундаментальные и прикладные науки. Естествознание и псевдонаучные тенденции. Религия и наука. Естествознание и культура.
- •3)Понятие научной истины. Критерии и границы адекватности истины. Особенности процесса отображения в сознании наблюдателя.
- •4) Научные революции. Особенность современной научно-технической революции.
- •Первая научная революция XVII века
- •Вторая научная революция конца XVIII века — 1-я половина XIX века
- •5)Методы научного познания действительности. Соотношение рационального и иррационального мышления.
- •Виды научного метода Теоретический научный метод Теории
- •Гипотезы
- •Научные законы
- •Научное моделирование
- •Эмпирический научный метод Эксперименты
- •Научные исследования
- •Наблюдения
- •Измерения
- •6) Дифференциация и интеграция научного знания. Диалектика свойств системы и ее частей. Естествознание и философия.
- •7) Развитие понятий: материя, движение, пространство и время. Структурные уровни организации материи.
- •8) Соотношение закономерности и случайности в окружающем мире. Принцип причинности и лапласовский детерминизм.
- •9) Роль математики в естествознании. Моделирование явлений природы. Системные принципы.
- •10)Измерения – основа естественнонаучного познания. Система единиц измерения. Виды измерений и погрешностей. Обработка результатов измерений.
- •Традиционные системы мер Единицы измерения, сгруппированные по физическим величинам
- •11)Фундаментальные взаимодействия , их роль в природных процессах. Универсальные физические постоянные. Что такое Поле. Близкодействие и дальнодействие. Биополе.
- •12)Св-ва вещества. Концепция атомизма. Понятие системы . Структурные уровни организации материи в микро,макро и мегамире.
- •13)Этапы развития физики и осн.Достижения каждого этапа.
- •14)Понятие классической механики – масса, вес, сила, энергия и импульс. Законы Ньютона. Закон всемирного тяготенпя. Космические скорости.
- •15)Принцип относительности инвариантной симметрии. Законы сохранения механики.
- •16)Развитие представлений о свете. Проявление двойственной системы света
- •17)Общая и специальная теории относительности. Постулаты специальной теории относительности. Единое пространство-время.Эквивалентность массы и энергии.
- •18)Развитие представлений о природе тепловых явлений. Агрегатные состояния вещества. Понятие температуры макросистем.
- •19) Термодинамический и молекулярно-кинетический подходы в тепловых явлениях.
- •20)Циклические процессы
- •21)Первое начало термодинамики . Особые св-ва тепловой энергии. Коэффициент полезного действия тепловых машин (цикл Карно) Тепловые двигатели.
- •22)Второе начало термодинамики. Необратимость реальных процессов. Концепция энтропии и законы ее изменения.
- •23)Колебательные и волновые процессы. Взаимодействие волн. Резонанс.
- •24)Сущность электромагнитной индукции Максвелла. Понятие электрического заряда, тока проводимости и тока совмещения.
- •26) Концепции атомного уровня материи. Развитие моделей атома. Характерные размеры и массы атома и его составляющих.
- •27)Строение атомных ядер. Ускорители частиц. Св-ва ядерных сил. Дефект массы и энергия связей.
- •28)Общие сведения о характеристиках элементарных частиц. Тождественность и корпускулярно- волновой дуализм микрочастиц.
- •29)Вероятностный характер микропроцессов. Соотношение неопределенностей и принцип дополнительности в квантовой механике.
- •30)Представление о физическом вакууме в квантовой теории. Виртуальные частицы. Перспективы развития науки о микромире.
- •31)Радиоактивность и ее разновидности. Понятие критической массы. Принципы получения атомной и термоядерной энергии.
- •32)Влияние радиоактивных излучений на биосферу. Параметры излучений. Дозы. Способы защиты. Проблемы утилизации радиоактивных отходов.
- •33)Развитие взглядов на эволюцию Вселенной. Концепция большого взрыва. Реликтовое излучение и первичный нуклеосинтез.
- •34)Масштабы, структура и возраст Вселенной. Закон Хаббла. Эволюция звезд. Синтез химических элементов.
- •35)Происхождение и состав Солнечной системы. Строение и эволюция Земли.
- •36) Энергетика. Концепции использования традиционных и альтернативных источников энергии. Создание отечествен. Энергетики
- •37) Концепции устойчивого развития общества
- •38)Естествознание и современные технологии, обеспечение их безопасности.
- •39)Проблемы создания единой научной картины мира
17)Общая и специальная теории относительности. Постулаты специальной теории относительности. Единое пространство-время.Эквивалентность массы и энергии.
О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), опубликованная Альбертом Эйнштейном в 1915—1916 годах[1][2]. В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.
В нерелятивистской механике существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть связанными, а тем более — пропорциональными друг другу. Однако их экспериментально установленная строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.
Специальная теория относительности (СТО; частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.
Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.
Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.
Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.
Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y,z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.
Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца.
Эквивале́нтность ма́ссы и эне́ргии — физическая концепция, согласно которой масса тела является мерой энергии, заключённой в нём. Энергия тела равна массе тела, умноженной на размерный множитель квадрата скорости света в вакууме:
,
где E — энергия тела, m — его масса, c — скорость света в вакууме, равная 299 792 458 м/с.
Данная концепция может быть интерпретирована двояко:
-
с одной стороны, концепция означает, что масса неподвижного тела (так называемая масса покоя) является мерой внутренней энергии этого тела[1];
-
с другой стороны, можно утверждать, что любому виду энергии соответствует некая масса. Например, было введено понятие релятивистской массы как характеристики кинетической энергии движущегося тела[2].
В современной теоретической физике концепцию эквивалентности массы и энергии обычно используют в первом смысле[3]. Главной причиной, почему приписывание массы любому виду энергии считается неудачным, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого принципа может запутывать и в конечном итоге не является оправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорят о массе, имеют в виду массу покоящегося тела. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. При этом под этим термином понимается увеличение инертных свойств движущегося тела.
В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.