Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение.ТКМ. Электротехн. материалы-ч.....docx
Скачиваний:
12
Добавлен:
27.10.2018
Размер:
322.19 Кб
Скачать

6. Магнитомягкие материалы. Механические свойства (δ,σ,%,ψ), магнитные свойства (b,Hc,μ), их применение.

Магнитомягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи в трансформаторах используют магнитомягкие материалы с повышенным удельным электрическим сопротивлением, обычно применяются магнитопроводы, собранные из отдельных изолированных друг от друга тонких листов.

Магнитомягкие материалы способны намагничиваться до насыщения в слабых полях, обладают высокой магнитной проницаемостью и малыми потерями на перемагничивание. Условно к магнитомягким относят материалы с Нс>800 А/м. Применяются в основном в качестве магнитопроводов дросселей, трансформаторов, электромагнитов, электрических машин и т.д.

Намагничивание магнитомягких материалов происходит в основном за счет смещения междоменных границ, а в магнитотвердых - за счет вращения вектора намагниченности (в магнитотвердых материалах на основе редкоземельных элементов преобладают процессы смещения).

В случае использования магнитомягких материалов в переменных магнитных полях желательно иметь большое значение электросопротивления магнетика. Диапазон рабочих частот для различных магнитомягких материалов определяется в значительной степени величиной их удельного сопротивления. Чем больше удельное сопротивление материала, тем при более высоких частотах его можно применять.

Магнитомягкие материалы по области применения делят на:

- материалы для постоянных и низкочастотных магнитных полей и

- на магнитомягкие высокочастотные материалы.

К магнитомягким материалам специального назначения относятся магнитострикционные материалы, с помощью которых электромагнитная энергия преобразуется в механическую энергию и термомагнитные сплавы, служащие для компенсации температурных изменений магнитных потоков в магнитных системах приборов.

Промышленные магнитомягкие материалы имеют значение Hc порядка 0,4 А/м. Поэтому они намагничиваются до индукции технического насыщения при невысоких напряженностях поля. Намагничивание происходит в основном за счет смещения доменных границ. Для таких материалов необходимо максимально облегчить движение доменных стенок при перемагничивании, уменьшить влияние магнитной анизотропии и магнитострикции. Низкие значения энергии магнитной анизотропии, а у ряда ферритов и низкие значения констант магнитострикции приводят к тому, что намагничивание материала, включающее процессы смещения границ доменов и вращение их вектора намагниченности, не требует значительных полей и энергий. Чтобы облегчить процесс намагничивания, необходимо уменьшить количество дефектов в сплаве (примесей внедрения, дислокаций и др.), мешающих свободному движению доменных стенок.

Помимо высокой магнитной проницаемости и малой коэрцитивной силы эти магнитомягкие материалы должны обладать большой индукцией насыщения, т.е. пропускать максимальный магнитный поток через заданную площадь поперечного сечения магнитопровода. В магнитном материале, используемом в переменных полях, должны быть возможно меньшие потери на перемагничивание, которые складываются в основном из потерь на гистерезис и на вихревые токи.

Для уменьшения потерь на вихревые токи для трансформаторов выбирают магнитомягкие материалы с повышенным удельным сопротивлением или собирают магнитопроводы из отдельных изолированных друг от друга тонких листов. В этом случае магнитные потери будут зависеть от толщины листа (ленты). К листовым и ленточным материалам предъявляется требование высокой пластичности. Магнитные свойства материалов зависят также от частоты магнитного поля. Важным требованием к магнитомягким материалам является обеспечение стабильности их свойств во времени, и по отношению к внешним воздействиям, таким, как температура и механические напряжения. Из всех магнитных характеристик наибольшим изменениям в процессе эксплуатации материала подвержены магнитная проницаемость и коэрцитивная сила.

К низкочастотным магнитомягким материалам относятся железо (армко-железо), электротехнические стали, в том числе кремнистая электротехническая сталь, низкокоэрцитивные сплавы, такие как пермаллой и альсифер.

Высокочастотные магнитомягкие материалы должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч герц. По частотному диапазону их можно подразделить на материалы для звуковых, ультразвуковых и низких радиочастот, для высоких радиочастот и для СВЧ.

По физической природе и строению высокочастотные магнитомягкие материалы подразделяют на магнитодиэлектрики и ферриты. При звуковых, ультразвуковых и низких радиочастотах можно использовать тонколистовые рулонные холоднокатаные электротехнические стали и пермаллои.

Магнитная проницаемость μ

Коэрцитивная

Индукция

Удельное со-

Материал

начальная

максимальная

сила, А/м

Нс

насыщения Тл

противление, мкОмм

Технически чистое железо

250 - 400

3500 - 4500

50 - 100

2,18

0,1

Электролитическое железо

600

15000

30

2,18

0,1

Карбонильное железо

2000 - 3000

20000 - 21500

6,4

2,18

0,1

Монокристалл чистейшего железа

>20000

1430000

0,8

-

0,097

Электротехническая сталь

200 - 600

3000 - 8000

10 - 65

1,95 - 2,02

0,25 - 0,6

Низконикелевый пермаллой

1500 - 4000

15000 - 60000

5 - 32

1,0 - 1,6

0,45 - 0,9

Высоконикелевые пермаллои

7000 - 100000

50000 - 300000

0,65 - 5

0,65 - 1,05

0,16 - 0,85

Табл.1. Некоторые свойства магнитомягких ферромагнитных материалов.

Широко применяются в технике слабых токов смешанные ферриты (например, соединение из цинкового и никелевого ферритов), а также феррогранаты. Для них характерно исключительно высокое электрическое сопротивление и практическое отсутствие скин-эффекта. Феррогранаты применяются при очень высоких частотах (если невелики диэлектрические потери).

Свойствами магнитомягких материалов обладают также некоторые аморфные магнетики и аморфные металлы.

В электро- и радиотехнике магнитомягкие материалы применяют для изготовления датчиков магнитного поля, считывающих головок для чтения магнитной записи, сердечников трансформаторов, дросселей, магнитопроводов, полюсных наконечников, телефонных мембран, магнитных экранов и т.д. В микроэлектронике их используют как элементы интегральных схем.

Магнитные свойства

Магнитная проницаемость μ — физическая величина, характеризующая связь между магнитной индукцией B и напряжённостью магнитного поля H в веществе. В общем случае зависит как от свойств вещества, так и от величины и направления магнитного поля. Обычно обозначается греческой буквой μ.

Магнитная индукция — векторная величина, показывающая, с какой силой магнитное поле действует на заряд , движущийся со скоростью . Более точно, — это такой вектор, что сила Лоренца , действующая на заряд , движущийся со скоростью , равна

.

Является основной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора. Такое исследование позволяет представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной.

В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл), 1 Тл = 104 Гс. Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

Магнитная индукция В - это векторная физическая величина, являющаяся силовой характеристикой магнитного поля в точке. Она равна отношению максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на ее площадь.

Свойства магнита определяются характеристиками размагничивающего участка петли магнитного гистерезиса материала магнита: чем выше остаточная индукция Br и коэрцитивная сила Hc, тем выше намагниченность и стабильность магнита. Характерные поля постоянных магнитов — до 1 Тл (10 кГс). Постоянный магнит — изделие, изготовленное из ферромагнетика, способного сохранять остаточную намагниченность после выключения внешнего магнитного поля. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Индукция насыщения Вr - остаточная намагниченность Мr [или остаточная магнитная индукция Вr, единица измерения - тесла (Тл)]; количественно оценивается величиной намагниченности, сохраняющейся в образце после того, как он был намагничен внешним магнитным полем до насыщения, а затем напряженность поля сведена до нуля. Величина Мrr) существенно зависит от формы образца, его кристаллической структуры, температуры, механических воздействий (удары, сотрясения и т.п.) и др. факторов.

Коэрцитивная сила (Нс) — такое размагничивающее внешнее магнитное поле напряженностью Н, которое необходимо приложить к ферромагнетику предварительно намагниченному до насыщения, чтобы довести до нуля его намагниченность I или индукцию магнитного поля B внутри.

Остаточная намагниченность BR — намагниченность, которую имеет ферримагнитный материал при напряжённости внешнего магнитного поля, равной нулю. В уравнениях обозначается как Mr. В технике часто считатется, что намагниченность M это синоним для остаточной магнитной индукции B (они отличаются на магнитную постоянную μ0, BR = μ0M), поэтому остаточная намагниченность часто обозначается как BR. Значение остаточной намагниченности один из важнейших параметров, характеризующих постоянные магниты. К примеру, неодимовый магнит имеет остаточную намагниченность примерно 1.3 тесла.

Механические свойства

Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала.

Статическое растяжение δ является одним из наиболее распространённых видов испытаний для определения механических свойств материалов.

Принято разделять пластичные и хрупкие материалы. Основное отличие состоит в том, что первые деформируются в процессе испытаний с образованием пластических деформаций, а вторые практически без них вплоть до своего разрушения. За критерий для условной классификации материалов можно принять относительное остаточное удлинение δ = (lк − l0)/l0, где l0 и lк — начальная и конечная длина рабочей части образца), обычно вычисляемое в процентах. В соответствии с величиной остаточного удлинения материалы можно разделить на:

  • пластичные (δ ≥ 10 %);

  • малопластичные (5 % < δ < 10 %);

  • хрупкие (δ ≤ 5 %).

Существующие материалы могут быть изотропными или анизотропными. В последнем случае из-за различия характеристик в различных направлениях необходимо произвести не одно, а несколько испытаний.

Относительное удлинение δ

l0 — расчётная длина образца.

Пластичность при растяжении материалов оценивается удлинением

        

         или сужением

        

         при сжатии — укорочением

        

         (где h0 и hk — начальная и конечная высота образца), при кручении — предельным углом закручивания рабочей части образца Θ, рад или относительным сдвигом γ = Θr (где r — радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2) характеризует сопротивление разрушению металла Sk, которое определяется

        

         (Fk — фактическая площадь в месте разрыва).