Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Материалы по истории

.doc
Скачиваний:
94
Добавлен:
27.07.2018
Размер:
2.81 Mб
Скачать

Я.Б. ван Гельмонт (1577-1644).

Хелмонт (Helmont) Ян Баптист ван (янв.1579, Брюссель.-30.12.1644, Вилворде, близ Брюсселя), голландский естествоиспытатель, один из представителей ятрохимии. В ботанике Г. впервые проводил экспериментальные исследования процесса питания растений, к-рые стали основой для т. н. водной теории питания растений. Несмотря на ошибочность, эта теория, рассматривавшая жизнь растений как процесс, происходящий только под влиянием материальных сил, нанесла удар религ. -идеалистич. мировоззрению. Г. полагал, что в пищеварении решающую роль играет кислота желудочного сока, и поэтому предлагал лечить щелочами болезни, вызываемые избытком кислот в желудке. Ввёл в химию термин газ. В ряде вопросов стоял на позициях алхимии, считая, напр., возможным превращение неблагородных металлов (ртути, свинца и др.) в золото при помощи т. н. философского камня. Признавал самопроизвольное зарождение, что для того времени было прогрессивным. Г. придерживался виталистич. представлений о том, что жизненные процессы якобы регулируются особыми духами жизни (археями).

"Положи в горшок зерна, заткни его грязной рубахой и жди. Через двадцать один день появятся мыши", — утверждал ГЕЛЬМОНТ,

Джозеф Пристли (англ. Joseph Priestley, 13 марта 1733—6 февраля 1804) — британский священник-диссентер, естествоиспытатель, философ, общественный деятель. Вошёл в историю прежде всего как выдающийся химик, открывший кислород и углекислый газ.

Биография, проповедническая деятельность

Родился в местечке Филдхед близ английского города Лидса, в семье ткача. Из-за финансовых затруднений родители отдали мальчика на воспитание его тётушке. Джозеф стал рано проявлять способности к наукам, и его тётушка решила дать ему хорошее образование, чтобы он мог стать впоследствии пастором. В связи с тем, что религиозные взгляды Пристли отличались от взглядов сторонников англиканской церкви, он поступил в академию в Дэвентри, где и получил филологическое и богословское образование. Эта академия готовила священников-диссентеров, противников англиканской церкви. Благодаря заботам тётушки и собственному усердию к моменту окончания академии Пристли был хорошо образованным для своего времени человеком, знакомым не только с теологическими трудами, но и с работами современных и древних философов. Он изучил девять иностранных языков — французский, итальянский, немецкий, латинский, древнегреческий, древнееврейский, арабский, сирийский, халдейский.

Получив такую сугубо гуманитарную подготовку, Пристли начинает свою деятельность в качестве проповедника в диссентерских общинах. Через некоторое время он пробует себя на педагогическом поприще в открытой им же частной школе. Однако в полной мере его талант педагога раскрылся после 1761 года, когда он начал работать в качестве преподавателя в Уорингтонской академии. В этот период он начинает свои занятия естественными науками, успехи в которых принесли ему впоследствии международную известность. Именно тогда и произошла встреча Пристли с Франклином, одобрившим интерес молодого преподавателя к проблемам электричества.

Работы в области физики электричества

В 1766 году Пристли установил обратно пропорциональную зависимость силы электрического взаимодействия от квадрата расстояния между зарядами. Свои результаты Пристли изложил в сочинении «История и современное состояние электричества, с оригинальными опытами», изданном в двух томах в Лондоне в 1767 г. Эта работа сразу получила признание в кругах английских ученых, и ее автор в том же году был избран членом Лондонского королевского общества.

Сочинение Пристли об электричестве можно разделить на две неравные части. Первую, большую, составляет обзор работ предшественников, а вторую — описание его собственных опытов. Среди экспериментов Пристли был и опыт, являющийся по существу повторением наблюдения Франклина, но проведенный более тщательно. Вот как его описывает сам Пристли: «…я наэлектризовал оловянный кубок объемом в одну кварту, стоявший на табурете из высушенного дерева; я наблюдал, что пара пробковых шариков, которые были изолированы, поскольку подвешивались на стеклянной палочке, и висели внутри сосуда так, что ни малейшая часть нитей не выступала над его горловиной, оставаясь именно в том месте, куда была помещена, ни в малейшей степени не испытывая воздействия электричества; однако если палец или любое проводящее тело, соединенное с землёй, касалось шариков или даже просто подносилось к ним, когда они находились вблизи горловины сосуда, они немедленно разделялись, испытывая притяжение в разные стороны; так же они вели себя при вытягивании вверх в тот момент, когда нити выступали над горловиной сосуда».

Далее Пристли описал различные варианты этого опыта, а затем сформулировал вывод: «Можно ли не заключить из этого эксперимента, что притяжение электричества подчиняется тем же законам, что и тяготение, и поэтому меняется соответственно квадратам расстояний; поскольку легко показать, что если бы Земля имела форму оболочки, то тело, находящееся внутри нее, не притягивалось бы к одной стороне сильнее, чем к другой»

В 1766 году Пристли высказал догадку о том, что электрические силы подчиняются закону «обратных квадратов», по аналогии с законом всемирного тяготения Ньютона. В «Математических началах натуральной философии» Ньютон рассмотрел задачу о том, какая сила действует на тело, помещенное внутрь сферической оболочки, и показал, что эта сила равна нулю. Вывод Ньютона справедлив для любых сил, подчиняющихся закону «обратных квадратов». При этом сила не действует на тело только внутри сферического однородного слоя. При нарушении либо условия сферичности слоя, либо условия его однородности это утверждение перестает быть справедливым.

Следует отметить, что форма сосуда, с которым экспериментировал Пристли, была далека от сферической. Следовательно, решение задачи Ньютона неприменимо к опыту Пристли и его вывод основан на очень грубой аналогии между действием электрических и гравитационных сил. В то же время дальнейшее развитие науки показало, что «нулевой» метод, то есть метод, основанный на доказательстве равенства нулю силы, может быть весьма эффективным при обосновании закона «обратных квадратов».

Открытия в области химии

Пристли по праву его можно считать одним из основоположников современной химии. Его основные химические исследования были посвящены изучению газов. В этой области ему принадлежит ряд крупнейших открытий. В 1771 г. Пристли открыл фотосинтез, обнаружив, что воздух, испорченный горением или дыханием, становится вновь пригодным для дыхания под действием зеленых частей растений. В 1778 г. он доказал, что при фотосинтезе растения поглощают углекислый газ и вырабатывают кислород.

В 1772 г. Пристли, действуя разбавленной азотной кислотой на медь, впервые получил окись азота — «селитряный воздух» — и нашёл, что окись азота при соприкосновении с воздухом буреет вследствие образования двуокиси азота. Пользуясь для собирания газов ртутной ванной, Пристли в 1772—74 гг. впервые получил хлороводород — «соляно-кислый воздух» и аммиак — «щелочной воздух».

Вместе с другими учеными, такими, как Антуан Лавуазье, Генри Кавендиш, Карл Шееле, он способствовал утверждению представлений о сложном составе воздуха. Пристли принадлежит честь открытия в 1774 году кислорода. Нагревая окись ртути, он выделил кислород — «бесфлогистонный воздух». Кроме того, Пристли в 1775 г. получил в чистом виде фтористый кремний, сернистый газ, а в 1799 г. окись углерода. Обогатив науку многими новыми фактами, Пристли, однако, не смог правильно объяснить их и до конца жизни оставался последователем ошибочной теории флогистона, отвергнутой трудами Лавуазье, поэтому его теоретические идеи не шли ни в какое сравнение с описанными им остроумными и убедительными экспериментами. Кроме химии, его исследования относятся также и к оптике. Пристли — автор книги «История и современное состояние открытий, относящихся к зрению, свету и цветам», опубликованной в 1772 г.

Работы Пристли получили широкую известность в научных кругах. Он был избран почетным доктором Эдинбургского университета, членом Лондонского королевского общества, иностранным членом Парижской и Петербургской академий наук

Общественная и философская деятельность

Несмотря на международное признание, Пристли на протяжении всей жизни был вынужден переезжать из города в город в поисках прилично оплачиваемого места. Дольше всего он прожил в Бирмингеме, где с 1780 по 1791 гг. выполнял обязанности приходского священника, а в свободное время проводил химические эксперименты. В этом городе Пристли участвовал в работе так называемого «Лунного общества», члены которого интересовались научными проблемами, главным образом вопросами естествознания. Заседания этого общества происходили раз в месяц по понедельникам, предшествовавшим полнолунию, — отсюда и его название. В Общество входили люди, интересующиеся наукой, независимо от их религиозных и политических взглядов. «Нам нет дела,— говорил Пристли,— до политических и религиозных принципов каждого из нас: мы объединены общей любовью к науке, которой достаточно, на наш взгляд, чтобы соединить всех без различия лиц — христиан, евреев, магометан, язычников, монархистов и республиканцев».

Пристли придерживался весьма прогрессивных для второй половины XVIII в. философских и политических взглядов и активно занимался их пропагандой. В философии он был сторонником материализма, хотя и полагал, что законы материального мира созданы божественным разумом (деизм). После Великой французской буржуазной революции конца XVIII в. Пристли с большой силой и страстностью оправдывал право народа на восстание и свержение тирании. Он стал членом общества «Друзей революции» и как проповедник пропагандировал идеи равенства и братства, отстаивал свободу совести и веротерпимость. Пристли был идеологом радикально настроенной части английской буржуазии эпохи промышленного переворота в Англии.

Эта деятельность, а также горячие симпатии Пристли к идеям Великой французской буржуазной революции вызвали ненависть к нему со стороны реакционеров. 14 июля 1791, когда группа его друзей собралась у него, чтобы отметить годовщину взятия Бастилии, с помощью подстрекательства гражданские и церковные власти Бирмингема спровоцировали нападение на его дом. Толпа фанатиков разгромила и сожгла дом, уничтожила лабораторию и библиотеку рукописей Пристли. Сам Пристли и члены его семьи едва избежали расправы и с трудом спаслись.

Разгром дома Пристли вызвал возмущение не только в Англии, но и за рубежом. Во Франции были собраны средства для восстановления дома и лаборатории, а в сентябре 1792 г. Пристли был провозглашен почетным гражданином Франции. И все же, несмотря на помощь и поддержку друзей, Пристли решил покинуть родину и переехать в Америку, куда ранее эмигрировали его сыновья. С 1794 г. до конца жизни ученый жил в Америке, занимаясь в основном литературной работой. Умер Пристли в 1804 г.; его правнук Генри Ричардсон — самый влиятельный американский архитектор XIX века.

Йоха́ннес (Ян) Ингенха́уз (Ингенго́ус) (нидерл. Johannes (Jan) Ingenhousz или Ingen-Housz, 8 декабря 1730, Бреда, Нидерланды, — 7 сентября 1799, Боувуд, Уилтшир, Англия) — голландский и английский физик и химик.

Наука ему обязана применением стеклянных кругов к электрическим машинам, приписываемым неверно Рамсдену, опытами над гелиотропизмом растений и исследованием выделяемого ими газа (кислорода и углекислого газа), в зависимости от того, находятся ли они в тени или на солнце, опытами над теплопроводностью твёрдых тел.

Совместно с Джозефом Пристли открыл замечательное соотношение между жизнью животных и растений; они показали, что выдыхаемый животными углекислый газ поглощается растениями, взамен которой растения выделяют при свете кислород — газ, необходимый для животных; им удалось, кроме того, показать, что растениям не чужд и противоположный процесс, то есть поглощение кислорода и выделение угольной кислоты, процесс, совершенно аналогичный дыханию животных.

Сенебье Жан

Сенебье (Senebier) Жан (6.5.1742, Женева, — 22.7.1809, там же), швейцарский естествоиспытатель. Основные труды по физиологии растений, главным образом по фотосинтезу. С. экспериментально доказал, что источник углерода в зелёных растениях — двуокись углерода, усваиваемая ими под влиянием света. Предложил термин "физиология растений" (1791) и написал первый учебник по этой дисциплине ("Physiologique végétale", v. 1—5, 1800). Заложил экспериментальные основы фотохимии. Ряд работ по метеорологии, физике, химии.

Лит.: Тимирязев К. А., Жан Сенебье, основатель физиологии растений, Соч., т. 8, М., 1939.

Буссенго Жан Батист

Буссенго (Boussingault) Жан Батист (2.2.1802, Париж, — 11.5.1887, там же), французский химик, автор классических исследований о питании растений, один из основоположников научной агрохимии, член Парижской АН (1839). Окончил Высшую горную школу в Сент-Этьенне. Был профессором сначала в Лионском, затем в Версальском агрохимических институтах, с 1839 в Консерватории искусств и ремёсел (Париж). Исследовательскую и практическую работы проводил в своей лаборатории в Бехельбронне (Эльзас). Б. разработал ряд вопросов физиологии и агрохимии — корневое питание растений, вопросы удобрений, круговорота веществ в природе, азотистый обмен веществ, динамика азота в почве, в частности установил, что все растения (кроме бобовых, которые сами обогащают почву азотом) берут азот из почвы. Основатель вегетационного метода в области физиологии растений и агрономии. Автор многочисленных статей, двух капитальных сводок "Полевое хозяйство в свете химии, физики и метеорологии" (т. 1—2, 1851), "Агрономия, земледельческая химия и физиология" (т. 1—7, 1860—84).

«Мертвый» газ и жизнь

В первые азот был открыт английским ученым Д.Резерфордом в 1772 г. А.Л.Лавуазье совместно с другими учеными в 1787 г. предложил термин «азот», что в переводе с греческого означает «безжизненный». Но не прошло и полувека, как выяснилось, что «безжизненный» азот – это один из элементов жизни, входящий в состав белков.

Азот входит в состав живых организмов – как растительных, так и животных: он имеется в каждой живой клетке, в белковых ее веществах. Жизнь без азота невозможна. Несмотря на неисчерпаемые запасы азота в атмосфере, ни животные, ни большинство растений непосредственно из воздуха усваивать свободный азот не могут.

Ж.Б.Буссенго

(1802–1887)

То, что азот имеет громадное значение в жизни растений, было установлено учеными еще в

1822–1837 гг. Но откуда берут растения азот – из почвы или атмосферы, долгое время оставалось неясным. Ответить на этот вопрос взялся французский ученый Ж.Б.Буссенго. Его способ исследования получил название метода песчаных культур и с тех пор имеет широкое распространение среди ботаников и агрономов всего мира.

Рис. 1 дает нам представление о том, как ставил свои опыты Буссенго. Он брал сосуды с прокаленным песком, прибавлял туда золы семян того вида растений, над которыми производил опыт, и в эту почву сеял семена. Сосуд помещал в плоскую стеклянную чашку с серной кислотой и прикрывал большим стеклянным колпаком. Серная кислота предназначалась для поглощения могущего проникнуть из воздуха под колпак аммиака.

Рис. 1. Установка Ж.Б.Буссенго для изучения способности растений усваивать атмосферный азот

Под колпак вводились две стеклянные трубки: через одну растение поливалось дистиллированной водой, а через другую вводился необходимый для растения углекислый газ. После этого прибор выставлялся на свет. Под колпаком кроме атмосферного азота других каких-либо его источников для растений не было. Количество азота в семенах определялось путем точного анализа таких же семян.

После 2–3 месяцев от начала постановки опыта производился анализ зрелого растения. Прибавления азота не наблюдалось. Отсюда следовал ясный вывод: атмосферный азот растением не усваивается. Если посадить растение в лишенную азота почву, оно так же испытывает голод, как и животное, лишенное пищи.

Внесение азота в почву в виде солей резко влияет на рост и развитие растений, что изображено на рис. 2 (внизу).

Рис. 2.

Влияние азотных удобрений

на злаки (внизу) и на бобовые растения (вверху)

Но опыты над растениями семейства бобовых (бобы, горох, клевер, вика, чечевица, люпин и др.) показывают, что растение почти не отзывается на внесение в почву азотных соединений. Все они хорошо развиваются и без азотных удобрений. Более того, они сами удобряют азотом почву: после их гибели и разложения почва становится богаче азотом. На такой почве и другие растения, чуткие к содержанию азота в ней, начинают давать лучший урожай.

Значит, каким-то образом растения усваивают атмосферный азот. Долгое время это было загадкой. Но при дальнейшем изучении вопроса выяснилась любопытная особенность в строении бобовых растений: у них у всех на корешках находятся особые образования в виде клубеньков (рис. 3), в которых, по исследованиям русского ученого М.С.Воронина (1838–1903), находятся особые бактерии, получившие название «клубеньковые». Вот эти-то бактерии способны связывать атмосферный азот и перерабатывать его в различные азотные соединения.

Рис. 3.

Клубеньки на корнях бобовых растений

За этим открытием последовал ряд других. Большая заслуга в разгадке тайны питания растений почвенным азотом принадлежит русскому ученому С.Н.Виноградскому (1856–1953). Выяснение этого вопроса можно считать триумфом науки.

Биологи, физиологи, микробиологи совместными усилиями раскрыли перед нами одну из самых интересных сторон жизни природы. Но неясного и нерешенного здесь еще много. Как различные бактерии усваивают азот? По существу, это и сейчас еще нерешенный вопрос. Удалось выделить из мертвых азотобактерий сок, содержащий энзимы (ферменты), под влиянием которых происходит связывание азота при обычных температуре и давлении. В этом случае оно происходит не менее интенсивно, чем в присутствии живых бактерий. Это открытие может иметь громадное значение для науки и техники связывания азота.

На азот установился взгляд как на одно из самых инертных веществ, если не считать инертных газов. При обычных условиях он не реагирует ни с большинством металлов, ни с неметаллами. Но в общем круговороте в природе азот претерпевает ряд многообразных превращений. На рис. 4 схематически изображен круговорот азота в природе. Разные авторы изображают этот цикл по-разному. Но в основном все схемы отражают одни и те же процессы. Постараемся разобраться в них.

Рис. 4.

Схема круговорота азота в природе

Каковы источники пополнения почвы азотом? В результате грозового разряда происходит образование оксида азота(II), который, соединяясь с кислородом воздуха, превращается в оксид азота(IV):

N2 + О2 = 2NО,

2NO + O2 = 2NО2.

Произведенные учеными расчеты позволили установить, что при каждом разряде молнии образуется от 80 до 1500 кг оксидов азота. Растворяясь в дождевой воде, оксид азота(IV) соединяется с ней химически и превращается в азотную кислоту:

3NO2 + Н2О = 2НNO3 + NO.

Оксид азота(II) снова окисляется в ходе превращения в азотную кислоту, которая попадает вместе с дождем в почву, нейтрализуется ее карбонатами и дает соли азотной кислоты (нитраты), усваиваиваемые растениями. Подсчитано, что в результате грозовых разрядов в почву вносится в течение года от 4 до 15 кг азота на 1 га земной поверхности.

Свободный азот воздуха усваивается бактериями, находящимися в клубеньках бобовых растений (клевер, люцерна, люпин, горох). Азот из атмосферы усваивается свободноживущими бактериями почвы, входит в их состав. Животные при жизни выделяют кал, мочу, содержащие азотистые вещества, а поле смерти животного все тело его, содержащее белок, поступает в почву. Небольшое количество азота вносится в почву плесневыми грибками и другими организмами.

Что же происходит с органическим веществом в почве? Оно разлагается, образуя аммиак. Этот процесс проходит также не без участия бактерий особого рода и называется аммонизацией.

Ученые выяснили, что в почве аммиак при участии особых бактерий окисляется в азотистую кислоту НNO2. Эти бактерии в различных странах различны по величине и форме. Затем НNO2 окисляется в НNO3. Это происходит при помощи другого вида бактерий (Nitrobacter). Почти во всех странах мира они одинаковы по величине и форме. Так заканчивается процесс нитрификации.

В дальнейшем процесс протекает по такой схеме: азотная кислота в почве нейтрализуется, т.е. образуются нитраты, они поглощаются корнями растений, образуется растительный белок; животные, съедая растение, усваивают азот, получается животный белок, этот белок попадает в том или ином виде в почву и... все повторяется.

Помимо перечисленных семейств бактерий в почве есть еще одно, которое занимается весьма нежелательным для земледельца разложением НNO3 с высвобождением азота. Это явление называется денитрификацией. Количество связанного азота в почве при этом уменьшается.

Уменьшение его может происходить и еще одним путем: нитриты, нитраты и соли аммония обладают очень хорошей растворимостью и легко вымываются из почвы наземными и подземными водами. Из почвы они уносятся водой в ручьи и реки, из рек – в моря, а там разлагаются (опять с помощью бактерий!), и снова получается свободный азот, поступающий в атмосферу.

Можно выделить три круга изменений, претерпеваемых азотом:

• большой круг – атмосферный азот нитрификация в почве разложение нитратов денитрифицирующими бактериями атмосферный азот;

• малый круг – животное разложение тела животного и его отбросов с образованием аммиака окисление NH3 в НNO2 окисление НNO2 в НNO3 и образование нитратов усвоение солей растениями с образованием растительного белка образование животного белка возвращение растительного и животного белка в почву;

• второй малый (подземный) круг – почвенные нитраты бактерии, потребляющие селитру, белок тела бактерий разложение тела бактерий с образованием нитратов.

Можно установить еще ряд циклов, но отмеченные, однако, являются важнейшими.

Мы привыкли смотреть на бактерии как на наших врагов. Таких среди них действительно очень много. Но приходило ли раньше кому-либо в голову, что вся жизнь на Земле, в том числе и наша, обязана все тем же бактериям?!

Несмотря на то, что мы имеем естественный путь пополнения почвы азотом, для культурных растений, особенно при сильно развитом хозяйстве, азота совершенно не хватает. Это прежде всего объясняется тем, что азот содержится главным образом в продуктовых частях растений (зернах, плодах), уносимых человеком с поля вместе с другими продуктами урожая. Азот вносится в почву с навозом, но при развитом (интенсивном) хозяйстве навозного удобрения не хватает. Поэтому снабжение почв связанным азотом в виде природных или искусственных веществ – задача колоссальной важности.

Какие же имеются на Земле запасы азотсодержащих веществ, которые можно было бы использовать для производства искусственных удобрений? Это в первую очередь селитра и затем каменный уголь.

Селитра встречается в разных местах земного шара. Самые большие запасы ее находятся в республике Чили (Южная Америка) между прибрежными и высокими Кордильерами. Залежи ее образовались, вероятно, следующим образом. Вся эта местность была некогда морским дном, а затем медленно поднялась. Огромные леса морских водорослей, накопившихся там, подверглись разложению под влиянием бактерий, которые превратили азот органического вещества в азотную кислоту, претерпевшую затем превращение в селитру. Эту теорию подтверждает наличие в селитре йодистых солей, которые, как известно, находятся в морской воде и поглощаются из нее водорослями.

Ныне месторождения селитры в Чили представляют собой пустынную местность, называемую Атакамой. Селитра была обнаружена здесь в 1821 г. Связанного азота в ней около 7%. Перед отправкой селитру перекристаллизовывают, поэтому содержание NaNO3 в ней доходит до 90%. Вывозиться из Чили селитра стала в 1830 г., и с тех пор ее экспорт в Европу и другие страны стал расти с неимоверной быстротой.

Залежи селитры найдены также в Калифорнии, Африке, Малой Азии, Египте, но везде в небольшом количестве. У нас селитра встречается во многих местах, но ни одно месторождение не является крупным промышленным. Царская Россия ввозила селитру на сотни тысяч золотых рублей.

В 1898 г. знаменитый английский ученый Уильям Крукс на ученом конгрессе в г. Бристоле сделал тревожное предупреждение о том, что при вывозе селитры из Чили такими темпами к 1950 г. вся селитра будет исчерпана, и мир окажется перед страшной угрозой голода. Особенно сильно, по уверениям Крукса, эта опасность коснется жителей Европы, основным продуктом питания которых является пшеница, требующая большого количества азотных удобрений. В меньшей степени эта опасность грозила жителям Азии, употребляющим в пищу рис, не требующий большого количества связанного азота.