Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
The Digital Filmmaking Handbook.pdf
Скачиваний:
179
Добавлен:
11.07.2018
Размер:
19.48 Mб
Скачать

Back in the first chapter of this book, we said that digital filmmaking is better, cheaper, and easier than it was several years ago. Editing gear is where the most dramatic simplification has occurred. In fact, it’s gotten so much simpler that we streamlined two

chapters into one rather short chapter.

Full-resolution HD video involves huge file sizes and very intense computer processing capabilities and throughput. But somewhere along the way, computers caught up. The average high-end personal computer is more than capable of editing full-res HD video right out of the box. Things like media capture cards and breakout boxes are pretty much a thing of the past. Sure they still exist, and in some cases, you might find them useful, but for the most part, you can just plug and play.

The same is true for all the editing peripherals that were staples of the editing room. Thanks to HD integration and tapeless workflow, NTSC monitors, calibration tools, video decks, and all the assorted gear that once surrounded your computer are no longer required.

So what exactly do you need to set up your editing workstation?

Setting Up a Workstation

These days, the first step of setting up an editing workstation is to buy a new computer (see Figure 11.1). Any new Mac that you buy, be it a laptop or desktop machine, will come with built-in FireWire and HDMI ports and a hard drive that’s fast enough to handle any HD editing tasks. Similarly, just about any Windows machine that you buy that includes built-in FireWire or eSATA ports will also include speedy disk storage that will be suitable for video editing. What’s more, you can easily expand your storage options with external hard drives.

Figure 11.1

Components of a typical tapeless HD editing workstation.

242 The Digital Filmmaking Handbook, 4E

CPU

Working with video requires a lot of processing power, but most new computers with 2GHz or greater processors are up to the job. But don’t forget that you’ll be doing more than just editing video. Be sure to get enough computing muscle to run the various image editors, compositing, and special effects programs that you’ll want to use.

When we wrote the first edition of this book, it was still possible to buy a new computer that didn’t have enough processing power to handle an HD stream. Nowadays, you’d have to look really hard to find a new machine that was similarly hobbled. For the most part, any CPU you buy today should be plenty speedy for video editing and that includes most laptops.

If you acquired your footage using a proprietary card or optical disk format, such as P2, you will need a special card or disk reader.

RAM

HD video editing can use a fair amount of RAM, so a safe bet is 1–2GB of RAM for most editing applications.

However, if you’re going beyond simple editing with basic dissolves and effects, you should spring for extra memory. To prepare titles and special effects, you might be depending on an image editor such as Photoshop. In addition, specialized applications that load video segments into RAM—After Effects, for example—need lots of memory.

We guarantee that no one who edits video has ever said, “Gosh, I wish I hadn’t bought all that extra RAM.”

Storage

Buying enough storage used to be the bane of digital video editing. However, with recent changes in technology and pricing, storage has become surprisingly affordable. How much storage you’ll need depends largely on the nature of your project. We mentioned in Chapter 10, “DSLRs and Other Advanced Shooting Situations,” that the raw footage for a feature film will probably add up to 1TB. You’ll want to store a copy of that footage on a separate drive as an off-site backup. Then you’ll want a separate set of drives for your editing workstation.

Once you are ready to edit, you’ll probably transcode the footage to an intermediary codec, such as Apple ProRes or Avid DNxHD. Depending on which resolution you choose, transcoding can actually increase your file sizes. We’ll talk more about importing and transcoding media in Chapter 13, “Preparing to Edit,” but be aware that odds are high that transcoding will increase your raw media by a ratio of about 2.5:1. That means you’ll need at least 2.5TB for your media, and then you’ll probably need extra space for music, renders, and other stuff. 4TB is a safe place to start. Luckily, that will only set you back about $500.

When buying drives, you have the choice of purchasing a RAID or daisy-chaining several non-RAID drives together. RAID stands for Redundant Array of Independent Disks—usually referred to simply as an array—and consists of two or more identical hard drives that have been logically striped with indexing information so that they can be treated as a single drive. For video, the advantage of an array is speed. Because the computer can interleave information between both drives, one drive can be reading or writing while the other drive is preparing to read or write.

RAIDs are very fast, but we don’t recommend putting all your media on one single RAID. If it fails, you could lose it all. Instead, daisy chain a couple of smaller RAIDS (1–2TB each)

Chapter 11 n Editing Gear

243

together. In a bad situation when one drive fails, you’ll still have half your media to work with. (And, of course, you’ll have your off-site backup in case of a bigger media disaster.)

RAIDs are nice, but not required. What you do need, however, are drives that use a fast inter- face—eSATA or FireWire—and have a spin rate of 7200rpms or higher. USB drives are plentiful and cheap, but the USB interface is simply not up to the task of moving around giant HD video files in real-time. They make great backup drives, however.

Monitors

Video applications tend to consume a lot of screen real estate. Consequently, even the most basic editing workstations have two computer monitors (see Figure 11.2). Any HD flat panel monitors will do, and the prices can be very reasonable. However, keep in mind that you get what you pay for with monitors, and at the lower-priced end of the spectrum, monitors can be uneven across the screen in terms of brightness, contrast, and color.

In addition to the two computer monitors, most editing workstations have a third monitor for viewing full-screen playback. This can be a third HD computer monitor or a flat panel television. To view true HD footage, you will need to make sure that you have an HDMI or SDI signal coming out of your computer and going into your video monitor.

Figure 11.2

Even the most basic editing workstations have two computer monitors.

244 The Digital Filmmaking Handbook, 4E

If you are planning to do lots of color grading on your system, you should consider adding a hardware waveform monitor and vectorscope. These are tools used to view the video signal in different ways to help you set the white levels, the black levels, and the colors. We discuss how to use waveform monitors and vectorscopes in Chapter 16, “Color Correction” and also in the Chapter 13 materials provided on the companion Web site at www.thedigitalfilmmakinghandbook.com.

Videotape Interface

If you acquired your footage on videotape, you will need a video interface to get the video off the videotapes and into your computer. Also, if you want to make outputs of your project on videotape, you will need a video interface, regardless of your acquisition format.

If your videotape format is FireWire-based, such as DVCPro-HD or HDV, then you can simply use FireWire cables to move media off your tapes and into your computer (see Figure 11.3). As long as your computer has a FireWire port, you can simply use FireWire cables to attach your computer to a videotape deck (VTR) or camcorder. If you plan to capture lots of media, we recommend investing in a VTR and saving the wear and tear on your camcorder.

Figure 11.3

Components of a typical FireWire-based editing workstation.

If your videotape format is not FireWire-based, you will need a video card or a breakout box with HD-SDI input and output in order to move your media into your workstation (see Figures 11.4 and 11.5). You’ll also need a VTR that can play back your videotape format (see Figure 11.6). High-end VTRs are a big investment.

Chapter 11 n Editing Gear

245

Figure 11.4

Components of a typical SDI-based editing workstation.

Figure 11.5

This AJA Kona HD video card offers HD-SDI input and output that allows for input and output to a variety of HD videotape formats. It can be used in tandem with a breakout box (shown later in this chapter) and also adds increased performance to your system.