Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 курс / 2 семестр / ЭКЗАМЕНЫ / Шпоры по геохимии.docx
Скачиваний:
29
Добавлен:
07.07.2018
Размер:
109.23 Кб
Скачать

1.История развития геохимии. Геохимия — наука о химическом составе Землиипланет, законах распределения и движенияэлементовиизотоповв различных геологических средах, процессах формированиягорных пород,почви природных вод. Геохимия имеет глубокие корни. Её основы могут быть прослежены в античности, но многие из открытий, лежащих в основе науки, были сделаны между 1800 и 1910 годами. Была составлена периодическая система элементов, открыта радиоактивность и разработана термодинамика гетерогенных систем. Солнечный спектр был использован для определения состава Солнца. Эта информация, совместно с химическими анализами метеоритов, открыла дверь для нового понимания Вселенной. В течение первой половины двадцатого века множество учёных использовали разнообразные методы для определения состава земной коры, и геохимия многих редких элементов была изучена с использованием появившегося метода эмиссионной спектроскопии. Вернадский основал биогеохимию. Кристаллические структуры большинства минералов были определены методом рентгеновской дифракции. Родилась изотопная геохимия. Огромный прогресс науки и технологий во время Второй мировой войны привёл к появлению новых приборов. Но геохимия в это время ещё развивалась сравнительно медленно. В 1950-х годах всего нескольких журналов было достаточно для публикации всех важных достижений в геохимии. На собрании Американского геофизического общества геохимических сессий было несколько, большинство из них было посвящено локальным проблемам и не выходили за рамки геохимии. Однако в 1960-х годах начался расцвет геохимии, продолжающийся до сих пор. За это время в науке произошёл существенный прогресс. Атмосферная и морская геохимия интегрировались в геохимию твёрдой Земли; космохимия и биогеохимия внесли огромный вклад в наше понимание истории нашей планеты. Началось изучение Земли как единой системы. Масштабные морские экспедиции показали, как и насколько быстро смешиваются воды океанов, они продемонстрировали связь между морской биологией, физической океанологией и морским осадконакоплением. Открытие гидротермальных источников показало, как формируются рудные месторождения. Были открыты прежде неизвестные экосистемы, и были выяснены факторы, которые управляют составом морской воды. Теория тектоники плит преобразила геохимию. Геохимики наконец поняли поведение осадков и океанической коры в зонах субдукции, их погружение и эксгумацию. Новые эксперименты при температурах и давлениях глубин Земли позволили выяснить, какова трехмерная структура мантии и как происходит генерация магм. Доставка на Землю лунных пород, исследование с помощью космических аппаратов планет и их спутников и успешный поиск планет в других звёздных системах произвели революцию в нашем понимании Вселенной. Геохимия также тесно срослась с экологией. Открытие озоновых дыр прозвучало как недвусмысленный тревожный признак и источник новых фундаментальных взглядов в фотохимии и динамике атмосферы. Увеличение содержания СО2 в атмосфере вследствие сжигания ископаемого топлива и уничтожения лесов было и будет предметом основных дискуссий о глобальных антропогенных изменениях климата. Исследование этих явлений служит источником новой информации о взаимодействии атмосферы с биосферой, корой и океанами. На сегодня геохимия заняла ведущее место среди наук о Земле. Она изучает глобальные перемещения вещества и энергии во времени и пространстве. Сбылось предсказание Вернадского о центральной роли геохимии среди наук о веществе.

Задачи: 1)определение относительной и абсолютной распространённости элементовиизотоповв Земле и на её поверхности; 2)изучение распределения и перемещения элементов в различных частях Земли (коре,мантии,гидросфереи т. д.) для выяснения законов и причин неравномерного распределения элементов; 3)анализ распределения элементов и изотопов в космосе и на планетахСолнечной системы(космохимия); 4)изучение геологических процессов и веществ, производимых живыми или вымершими организмами (биогеохимия).

Разделы: геохимия изотопов, геохимия магматических процессов, геохимия процессов гидротермального рудообразования, геохимия метаморфических процессов, геохимия метасоматических процессов, геохимия гипергенеза.

2. Распространение химических элементов и распред. в природе. Распространённость химических элементов, мера того как распространены или редки элементы по сравнению с другими элементами в данной среде. Распространённость в различных случаях могут измерять массовой долей, мольной долей или объёмной долей. Распространённость химических элементов часто представляется кларками.

Например, массовая доля распространённости кислорода в воде составляет около 89 %, потому что это доля массы воды, которой является кислород. Однако, мольная доля распространённости кислорода в воде только 33 %, потому что только 1 из 3 атомов в молекуле воды является атомом кислорода. Во Вселенной в целом, и в атмосферах газовых планет-гигантов, таких как Юпитер, массовая доля распространенности водорода и гелия около 74 % и 23-25 % соответственно, в то время атомная мольная доля элементов ближе к 92 % и 8 %.

Однако, так как водород является двухатомным, а гелий — нет, в условиях внешней атмосферы Юпитера, молекулярная мольная доля водорода составляет около 86 %, а гелия — 13 %.

Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99 % массы земной оболочки, так что на остальные элементы приходится менее 1 %. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.

Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.

3.Строение ядра атомов химических элементов. Объект изучения химической науки, лежащий в основе всех теоретических представлений о составе и структуре вещества, некое простое начало, из которого собираются сложные системы, так сказать, элемент, – это атом в его современном определении.– электронейтральная система взаимодействующих элементарных частиц. Составные части атома – ядро и электроны. Электрон – истинная элементарная частица, заряженная отрицательно. Ядро состоит из частиц двух типов: положительно заряженных протонов и не имеющих заряда нейтронов. Оба типа частиц имеют общее название «нуклоны» и относятся к классу адронов и, как и другие андроны, в свою очередь сами состоят из элементарных частиц – кварков; поэтому протон и нейтрон в строгом смысле элементарными частицами не являются. Протоны и нейтроны характеризуются одинаковой массой, равной 1,67 · 10-24 г, называемой «атомной единицей массы» (сокращенно – а. е. м.); электрон же намного легче нуклонов, его масса равна 0,00055 а. е. м.– это определенный вид атомов, характеризующийся одинаковым зарядом ядра. Установлено, что численно заряд электрона (-1,6 · 10-19 Кл) и протона (1,6 · 10-19 Кл) равны и имеют название «условный единичный заряд»; для соблюдения правила электронейтральности атомов необходимо, чтобы сумма условных единичных зарядов была равна нулю, то есть чтобы количества протонов и электронов в атоме были одинаковы. Атомы одного и того же элемента, имеющие в ядре разное количество нейтронов и, соответственно, разную массу, называются изотопами. Каждый элемент имеет свое название и краткое стандартное обозначение из одной или двух букв латинского алфавита (например, С – от лат. carbon – для углерода)Из этих знаков складывается своеобразный язык химии – химические формулы, которые зашифровывают строение вещества; химические реакции тоже пишутся с использованием химических формул. В настоящее время известно 110 элементов.

Новые представления о строении электронных оболочек атома. Квантовая механика существенно изменила представления о строении атома. Если по Бору атом водорода состоит из положительно заряженного ядра, вокруг которого по круговой орбите с радиусом 0,529 А вращается электрон в виде точечного заряда, то с позиций квантовой механики картина строения атома углерода иная электрон двигается не по определенной орбите, а может находиться в любом месте вокруг ядра атома. Однако вероятность его нахождения в различных местах атома не одинакова. Картина распределения величины вероятности нахождения электрона в пространстве вокруг ядра обычно обозначается как электронное облако. Если бы можно было сфотографировать с выдержкой быстро движущийся электрон, то самые различные положения его были бы зафиксированы на снимке, который представлял бы собой изображение облака, Если проследить плотность электронного облака (т. е. вероятность нахождения электрона) в направлении радиуса атома, то окажется, что у самого ядра она равна нулю, потом быстро возрастает достигая максимального значения на расстоянии 0,529 А от ядра, а затем постепенно убывает.

4. Периодический закон и его значение в геохимии. Периодический закон лежит в основе геохимических классификаций элементов. Все химические элементы подраз­деляются на четыре основные геохимические группы: литофильные, халькофильные, сидерофильные и атмофильные. В особую группу иногда выделяют элементы биофильные, склонные концентрироваться в живых организмах.

Название «литофильные» происходит от греческих слов «литос» (камень) и «филео» (любовь). Эти элементы имеют специфическое сродство к кислороду и в условиях земной коры образуют кислородсодержащие минералы (оксиды, гидроксиды. соли кислородных кислот). Сюда относятся 53 элемента: Li, Be, В, С, О, F, Na, Mg, Al, Si, Р, С1, К, Са, Sc, Ti, V, Сг, Mn, Br, Rb, Sr, Y, Zr, Nb, I, Cs, Ba, Hf, Та, W, At, Fr, Ra, Ac, Th, Pa, U, РЗЭ.

Халькофильные элементы (их название происходит от греческого слова «халькос» - медь) имеют склонность давать природные соединения с серой и ее аналогами по Периодической системе - селеном и теллуром. К числу халькофильных элементов относятся: S, Сu, Zn, Ga, As, Se, Ag, Cd, Sb, Те, Au, Hg, Tl, Pb, Bi, Po.

Сидерофильные элементы («сидерос» - железо) растворяются в железных расплавах и дают сплавы с железом. Большинству сидерофильных элементов свойственно самородное состояние. К их числу относятся 11 следующих элементов: Fe, Со, Ni, Mo, Ru, Rh, Pd, Re, Os, Ir, Pt.

И наконец, атмофильные элементы («атмос» - пар, испарение) - это элементы, характерные для атмосферы: это все инертные газы, азот, водород (кислород не входит в число атмофильных элементов).

5. Классификация химических элементов s p d, металлы и неметаллы. Ввиду значимости внешней электронной оболочки атома различные области периодической таблицы иногда описываются как блоки, именуемые в соответствии с тем, на какой оболочке находится последний электрон.К s-элементам относят элементы IA-группы – щелочные металлы. Электронная формула валентной оболочки атомов щелочных металлов ns1. Устойчивая степень окисления равна +1. Элементы IА-группы обладают сходными свойствами из-за сходного строения электронной оболочки. При увеличении радиуса в группе Li-Fr связь валентного электрона с ядром слабеет и уменьшается энергия ионизации. Атомы щелочных элементов легко отдают свой валентный электрон, что характеризуют их как сильные восстановители. Восстановительные свойства усиливаются с возрастанием порядкового номера.К p-элементам относятся 30 элементов IIIA-VIIIA-групп периодической системы; p-элементы расположены во втором и третьем малых периодах, а также в четвертом—шестом больших периодах. Элементы IIIА-группы имеют один электрон на p-орбитали. В IVА-VIIIА-группах наблюдается заполнение p-подуровня до 6 электронов. Общая электронная формула p-элементов ns2np6. В периодах при увеличении заряда ядра атомные радиусы и ионные радиусы p-элементов уменьшаются, энергия ионизации и сродство к электрону возрастают, электроотрицательность увеличивается, окислительная активность соединений и неметаллические свойства элементов усиливаются. В группах радиусы атомов увеличиваются. От 2p-элементов к 6p-элементам энергия ионизации уменьшается. Усиливаются металлические свойства p-элемента в группе с увеличением порядкового номера.К d-элементам относятся 32 элемента периодической системы IV–VII больших периодов. В IIIБ-группе у атомов появляется первый электрон на d-орбитали, в последующих Б-группах d-подуровень заполняется до 10 электронов. Общая формула внешней электронной оболочки (n-1)dansb, где a=1?10, b=1?2. С увеличением порядкового номера свойства d-элементов изменяются незначительно. У d-эле-ментов медленно происходит возрастание атомного радиуса, также они имеют переменную валентность, связанную с незавершенностью предвнешнего d-электронного подуровня. В низших степенях окисления d-элементы обнаруживают металлические свойства, при увеличении порядкового номера в группах Б они уменьшаются. В растворах d-элементы с высшей степенью окисления обнаруживают кислотные и окислительные свойства, при низших степенях окисления – наоборот. Элементы с промежуточной степенью окисления проявляют амфотерные свойства. Металличность / неметалличность. В соответствии с закономерностями для упомянутых характеристик, наиболее ярко выраженные металлы располагаются в начале периода, а неметаллы — в его конце. В группах, напротив, по мере движения сверху вниз металлические свойства усиливаются, хотя и с некоторыми исключениями из общего правила. Сочетание горизонтальных и вертикальных закономерностей придает условной разделительной линии между металлами и неметаллами ступенчатый вид; расположенные вдоль этой линии элементы иногда определяются как металлоиды. Металл - это элемент, который имеет небольшое количество внешних электронов и с готовностью отдает их. Все металлы (кроме ртути) тверды при нормальных условиях. Однако твёрдость их различна. Неметаллы имеют большее (по сравнению с металлами) количество внешних электронов. Они обладают способностью присоединять дополнительные электроны. В свободном виде при комнатной температуре ряд из них газы, другие - твердые и один - жидкий.

6. Классификация Гольдшмидта.

Наиболее широко применяемая классификация. Элементы сгруппированы на основе их способности формировать естественные ассоциации в природных процессах. Это определяется рядом факторов:

1. Строение электронных оболочек, обуславливающее химические свойства элементов.

2. Положение элементов на кривой атомных объёмов.

3. Химическое «сродство» к тем или иным конкретным элементам, т.е. преимущественная склонность именно с этими определёнными элементами образовывать соединения (может измеряться значениями энергии образования определённых типов их соединений, например, оксидных).

Элементы подразделены на 5 групп: Литофильные - Li, Be, B, O, F, Na, Mg, Al, Si, P, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Br, Rb, Sr, Y, Zr, Nb, I, Cs, Ba, TR, Hf, Ta, W, At, Fr, Ra, Ac, Th, Pa, U. Включены кислород и галогены, а также ассоциирующие с ними элементы, то есть преимущественно образующие кислородные и галоидные соединения. Последние – это те, которые расположены на пиках и нисходящих участках кривых атомных объёмов, а также имеют максимальные величины энергии образования оксидных соединений.

Халькофильные (или тиофильные, «любящие» серу) – S, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb, Te, Au, Hg, Tl, Pb, Bi, Po). Те, которые ассоциируют преимущественно с медью и серой. Это – сера и её аналоги (селен, теллур), а также элементы, преимущественно склонные образовывать не оксидные, а сульфидные соединения. Для последних характерны 18-электронные внешние оболочки катионов, расположение на восходящих участках кривых атомных объёмов. Величины энергии образования кислородных соединений низкие. Некоторые способны существовать в самородном виде.

Сидерофильные - Fe, Co, Ni, Mo, Ru, Rh, Pd, Re, Os, Ir, Pt. Ассоциируют с железом. Все принадлежат к элементам с достраивающимися d-оболочками. Занимают промежуточное положение между лито- и халькофильными: минимумы на кривой атомных объёмов, промежуточные значения энергии образования кислородных соединений. В равной мере распространены и в оксидных, и в сульфидных ассоциациях.

Атмофильные – все инертные газы, N, H. Все являются газами, свойственно по преимуществу атомарное или молекулярное (вне соединений) состояние (видимость того, что Н представляет исключение, связана с тем, что атомарный водород теряется, рассеиваясь в космическом пространстве).

7. Классификация Вернадского. Подразделение химических элементов по характеру их поведения в процессах миграции.

1. Благородные газы – He, Ne, Ar, Kr, Xe. Соединения с другими атомами образуют исключительно редко, поэтому в природных химических процессах значительного участия не принимают.

2. Благородные металлы – Ru, Rh, Pd, Os, Ir, Pt, Au. Соединения редки. Преимущественно присутствуют в форме сплавов, и образуются в основном в глубинных процессах (магматических, гидротермальных).

3. Циклические элементы – H, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Ba, (Be, Cr, Ge, Zr, Sn, Sb, Te, Hf, W, Re, Hg, Tl, Pb, Bi). Наиболее многочисленная группа и преобладающая по массе. Для каждого элемента характерен определённый круг химических соединений, возникающих и распадающихся в ходе природных процессов. Таким образом, каждый элемент проходит цепочку превращений, в конечном счёте возвращаясь к исходной форме нахождения – и далее. Циклы не являются полностью обратимыми, так как часть элементов постоянно выходит из круговорота (и часть так же снова в него вовлекается).

4. Рассеянные элементы – Li, Sc, Ga, Br, Rb, Y, Nb, In, J, Cs, Ta. Безусловно, господствуют рассеянные атомы, не образующие химических соединений. Незначительная доля может участвовать в образовании самостоятельных минеральных соединений (большинство – в глубинных процессах, а J и Br – в гипергенных).

5. Редкоземельные элементы – La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tu, Yb, Lu. Тяготеют к рассеянным. Основная черта – совместная миграция.

6. Радиоактивные элементы - Po, Rn, Ra, Ac, Th, Pa, U. Основная специфика в том, что в геохимическом процессе происходит постоянное превращение одних элементов в другие, что делает процессы их химической миграции наиболее сложными.

Элементы условности данной классификации:наличие химических элементов, занимающих промежуточное положение между группами, т.е. способных вести себя в миграционных процессах двояко; в этих случаях для отнесения такого элемента к одной из двух возможных групп «решающим аргументом будет история главной по весу части атомов или наиболее яркие черты их геохимической истории» (наличие доли субъективизма в таком критерии очевидно);выделение в особую группу радиоактивных элементов не учитывает разной устойчивости изотопов; у ряда элементов существенной является доля как стабильных, так и нестабильных изотопов, и, естественно, геохимическая история соответствующих долей общего числа атомов данного элемента будет различной (K, Rb, Sm, Re и др.). Сейчас, в связи с процессами радиогенного загрязнения, необходимо учитывать и миграцию искусственных радиоактивных изотопов.

Соседние файлы в папке ЭКЗАМЕНЫ