Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции_физика_механика_Тронева / Лекц.9 Основы термодинамики.pptx
Скачиваний:
365
Добавлен:
22.06.2018
Размер:
1.29 Mб
Скачать

Обратимые и необратимые процессы

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; для него «безразлично», идет процесс в прямом или обратном направлении.

Реальные процессы сопровождаются диссипацией энергии (из-за трения, теплопроводности и т.д).

Необратимый процесс

Обратимые и необратимые процессы

Обратимые процессы – это идеализация реальных процессов.

Их рассмотрение важно по двум причинам:

1) многие процессы в природе и технике практически обратимы;

2) обратимые процессы являются наиболее экономичными; имеют максимальный коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателей.

Второе начало термодинамики

Первый закон термодинамики не может отличить обратимые процессы от необратимых.

Он просто требует от термодинамического процесса определенного энергетического

баланса и ничего не говорит о том, возможен такой процесс или нет.

Направление самопроизвольно протекающих процессов устанавливает второй закон термодинамики.

Он может быть сформулирован в виде запрета на определенные виды термодинамических процессов.

Второе начало термодинамики

Английский физик У. Кельвин дал в 1851 г. следующую формулировку второго закона:

В циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Второе начало термодинамики

Гипотетическую тепловую машину, в которой мог бы происходить такой процесс, называют вечным двигателем второго рода.

В земных условиях такая машина могла бы отбирать тепловую энергию, например, у Мирового океана и полностью превращать ее в работу. Масса воды в Мировом океане составляет примерно 1021 кг, и при ее охлаждении на один градус выделилось бы огромное количество энергии (≈ 1024 Дж), эквивалентное полному сжиганию 1017 кг угля. Ежегодно вырабатываемая на Земле энергия приблизительно в 104 раз меньше. Поэтому вечный двигатель второго рода был бы для человечества не менее привлекателен, чем вечный двигатель первого рода, запрещенный первым законом термодинамики.

Второе начало термодинамики

Процессы, не противоречащие первому закону термодинамики, но запрещаемые вторым законом: 1

– вечный двигатель второго рода; 2 – самопроизвольный переход тепла от холодного

тела к более теплому (идеальная холодильная машина)

Второе начало термодинамики

Второй закон термодинамики непосредственно связан с необратимостью реальных тепловых процессов.

Энергия теплового движения молекул качественно отличается от всех других видов энергии – механической, электрической, химической и т. д.

Энергия любого вида, кроме энергии теплового движения молекул, может полностью превратиться в любой другой вид энергии, в том числе и в энергию теплового движения. Последняя может испытать превращение в любой другой вид энергии лишь частично. Поэтому любой физический процесс, в котором происходит превращение какого-либо вида энергии в энергию теплового движения молекул, является необратимым процессом, т. е. он не может быть осуществлен полностью в обратном направлении.

Энтропия

Понятие энтропии введено в 1865г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое

приведенным количеством теплоты.

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно d Q/T. Строгий теоретический анализ показывает, что приведенное

количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:

Энтропия

Из равенства нулю интеграла, взятого по замкнутому контуру, следует, что подынтегральное выражение d Q/T есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние.

Таким образом,