
- •Основы термодинамики
- •Внутренняя энергия
- •Внутренняя энергия
- •Внутренняя энергия
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Теплота и работа
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Число степеней свободы молекулы. Закон о равномерном
- •• Поступательные степени свободы связаны с движением молекулы как целого в пространстве, вращательные
- ••Если связь между атомами не жесткая, то добавляются колебательные степени свободы.
- ••Независимо от общего числа степеней свободы молекул 3 степени свободы всегда поступательные.
- ••Больцман установил закон, согласно которому для статистической системы (т. е. для системы у
- •Теплоемкость
- •Теплоемкость
- •Теплоемкость
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Уравнение Майера
- •Коэффициент Пуассона
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Адиабатический процесс
- •Первое начало термодинамики
- •Первое начало термодинамики
- •Второе начало термодинамики
- •Второе начало термодинамики
- •Круговой процесс (цикл)
- •Круговой процесс (цикл)
- •Круговой процесс (цикл)
- •Круговой процесс (цикл)
- •Круговой процесс (цикл)
- •Обратимые и необратимые процессы
- •Обратимые и необратимые процессы
- •Необратимый процесс
- •Обратимые и необратимые процессы
- •Второе начало термодинамики
- •Второе начало термодинамики
- •Второе начало термодинамики
- •Второе начало термодинамики
- •Второе начало термодинамики
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Энтропия
- •Тепловые двигатели
- •Тепловые двигатели
- •Тепловые двигатели
- •КПД теплового двигателя
- •КПД теплового двигателя
- •КПД теплового двигателя
- •Термодинамические циклы
- •Термодинамические циклы
- •Термодинамические циклы
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Цикл Карно
- •Третье начало термодинамики
- ••Нернст Вальтер Фридрих Герман (1864–1941) – немецкий физик и физико-химик, один из основоположников
- ••Согласно Нернсту, изменение энтропии S стремится к нулю при любых обратимых изотермических процессах,
- ••Нернст сформулировал теорему для изолированных систем, а затем М. Планк распространил ее на
- ••Объяснение теоремы Нернста можно дать только на основании квантово-механических представлений.
- ••Следствием третьего начала является то, что

Основы термодинамики
Первое начало термодинамики
Лекция 9

Внутренняя энергия
•Всякая термодинамическая система в любом состоянии обладает энергией, которая называется полной энергией. Полная энергия системы складывается из кинетической энергии движения системы как целого, потенциальной энергии системы как целого и внутренней энергии.

Внутренняя энергия
•Наряду с механической энергией, любое тело (или система) обладает внутренней энергией.
•Внутренняя энергия – энергия покоя.
•Она складывается из теплового хаотического
движения молекул, составляющих тело, потенциальной энергии их взаимного расположения, кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах и так далее.

Внутренняя энергия
•Внутренняя энергия является функцией состояния газа.
•Для данного состояния газа внутренняя энергия определяется однозначно, то есть является определенной функцией.
•При переходе из одного состояния в другое внутренняя энергия системы изменяется. Но при этом внутренняя энергия в новом состоянии не зависти от процесса, по которому система перешла в данное состояние.

Первое начало термодинамики
•Рассмотрим термодинамическую систему, для которой механическая энергия не изменяется, а изменяется лишь ее внутренняя энергия.
•Внутренняя энергия системы может изменяться в результате
различных процессов, например совершения над системой работы и сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в котором находится газ, мы сжимаем этот газ, в результате чего его температура повышается, т. е. тем самым изменяется (увеличивается) внутренняя энергия газа.

Первое начало термодинамики
•С другой стороны, температуру газа и его внутреннюю энергию можно повысить за счет сообщения ему некоторого количества теплоты - энергии, переданной системе внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с разными температурами).

Первое начало термодинамики
•Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе
итеплоте.
•Энергия механического движения может превращаться в энергию теплового движения и наоборот.
•При этих превращениях соблюдается закон сохранения и превращения энергии;
•применительно к термодинамическим процессам
этим законом и является первое начало термодинамики, установленное в результате обобщения многовековых опытных данных.

Теплота и работа
•Отличие между теплотой и работой состоит в том, что теплота передаётся в результате целого ряда микроскопических процессов, при которых кинетическая энергия молекул более нагретого тела при столкновениях передаётся молекулам менее нагретого тела.
• |
Общее между теплотой и работой, что они являются |
|
функциями процесса, т. е. можно говорить о величине |
|
теплоты и работы, когда происходит переход системы |
|
из состояния первого в состояние второе. Теплота и |
|
работа не является функцией состояния, в отличие от |
|
внутренней энергии. Нельзя говорить, чему равна |
|
работа и теплота газа в состоянии 1, но о внутренней |
|
энергии в состоянии 1 говорить можно. |

Первое начало термодинамики
•Допустим, что некоторая система (газ, заключенный в цилиндр под поршнем), обладая внутренней энергией U1, получила некоторое количество теплоты Q и, перейдя в новое состояние, характеризующееся внутренней энергией U2, совершила работу А над внешней средой,
т.е. против внешних сил.
•Количество теплоты считается положительным, когда оно подводится к системе, а работа - положительной, когда система совершает ее против внешних сил.

Первое начало термодинамики
•Опыт показывает, что в соответствии с законом сохранения энергии при любом способе перехода системы из первого состояния во второе изменение
внутренней энергии U = U2 – U1 будет одинаковым
и равным разности между количеством теплоты Q, полученным системой, и работой А, совершенной системой против внешних сил:
|
U = Q—A, |
или |
Q =Δ U + A |
Это уравнение выражает первое начало термодинамики: теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.