
- •Государственное образовательное учреждение высшего
- •Научный редактор
- •Введение
- •1. Термодинамический анализ процессов в теплоэнергетических установках
- •1.1. Обобщенная схема теплоэнергетической установки
- •1.1.1. Работа измерения давления в потоке при расширении
- •1.1.2. Работа изменения давления в потоке при расширении в адиабатных процессах
- •1.1.3. Изображение работы изменения давления в потоке
- •Произвольных процессов расширения
- •1.1.4. Работы изменения давления в потоке при сжатии
- •1.1.5. Работа изменения давления в потоке для адиабатных процессов сжатия
- •1.1.6. Изображение работы изменения давления в потоке
- •Произвольных процессов сжатия
- •Вопросы для самоподготовки к главе 1
- •2. Эксергия в потоке
- •Вопросы для самоподготовки к главе 2
- •3. Первый закон термодинамики для потока
- •3.1. Основные понятия и характеристики потока
- •3.2. Уравнение первого закона термодинамики для потока
- •Анализ первого закона термодинамики для потока
- •Вопросы для самоподготовки к главе 3
- •4. Истечение газа и пара через сопло
- •4.1. Расчет соплового канала
- •Особенности расчета соплового канала при истечении реальных газов и паров
- •4.2. Адиабатное истечение через сопло с потерями
- •4.3. Торможение. Параметры заторможенного потока
- •Методика расчета соплового канала при истечении через него веществ с начальной скоростью больше нуля
- •Вопросы для самоподготовки к главе 4
- •5. Дросселирование газов, паров и жидкостей
- •5.1. Анализ процесса дросселирования
- •5.2. Эффект Джоуля – Томсона
- •Вопросы для самоподготовки к главе 5
- •6. Смешение газов и паров
- •6.1. Смешение в объёме
- •6.2. Смешение в потоке
- •6.3. Смешение при заполнении объёма
- •Вопросы для самоподготовки к главе 6
- •7. Циклы паротурбинных установок
- •7.1. Анализ возможности практической реализации цикла Карно в области влажного насыщенного водяного пара
- •7.2. Цикл пту на перегретом паре и сжатии рабочего тела в области жидкости
- •7.3. Методика расчета цикла простой пту Расчет обратимого цикла пту
- •Определение теплоты, подведенной в цикле пту
- •Определение теплоты, отведенной из цикла пту
- •Тепловой баланс цикла пту
- •Расчет необратимого цикла пту
- •7.3.1. Система кпд цикла пту
- •7.4. Влияние параметров рабочего тела на тепловую экономичность пту
- •7.4.1. Влияние начального давления на тепловую экономичность пту
- •7.4.2. Влияние начальной температуры на тепловую экономичность пту
- •7.4.3. Влияние конечного давления на тепловую экономичность пту
- •7.5. Цикл пту с вторичным перегревом пара
- •Выбор давления вторичного перегрева пара
- •7.5.1. Методика расчета обратимого цикла пту с вторичным
- •7.5.2. Методика расчета необратимого цикла пту с вторичным перегревом пара
- •7.6. Регенеративный цикл пту
- •7.6.1. Методика расчета обратимого регенеративного цикла пту
- •Определение долей отборов пара на подогреватели
- •Определение теплоты, подведенной в цикле пту
- •Теплота, отведенная из цикла пту
- •Техническая работа расширения пара в турбина
- •Термический кпд цикла пту
- •7.6.2. Методика расчета необратимого регенеративного цикла пту
- •Определение долей отборов пара на подогреватели
- •Определение теплоты, подведенной в цикле пту
- •Теплота, отведенная из цикла пту
- •Техническая работа расширения пара в турбина
- •Кпд цикла пту
- •7.6.3. Анализ экономичности регенеративного цикла пту
- •7.6.4. Выбор оптимальных давлений отборов пара турбины на регенеративные подогреватели пту
- •Особенности расчета регенеративных пту с подогревателями поверхностного типа
- •7.7. Теплофикационные циклы пту
- •7.7.1. Методика расчета теплофикационного цикла пту
- •7.8. Особенности циклов пту аэс
- •7.8.1. Термодинамические особенности цикла аэс на насыщенном водяном паре
- •1) Удаление капельной влаги из пара позволяет осуществлять нагрев пара без резкого изменения объема;
- •2) Снижается расход греющего пара на пароперегреватель, так как на испарение влаги расходуется больше теплоты, чем на перегрев пара.
- •1) Степень сухости пара на выходе из чнд (хКдоп0,88) должна иметь допустимое значение, при этом хКдоп для чвд может быть меньше 0,88 в зависимости от высоты лопаток последних ступеней чвд турбины;
- •7.8.3. Термодинамические особенности двухконтурного цикла аэс на насыщенном водяном паре
- •7.8.4. Термодинамические особенности трехконтурного цикла аэс на перегретом водяном паре
- •7.8.5. Термодинамические особенности цикла аэс с газовым теплоносителем
- •7.8.6. Эксергетический анализ тепловой экономичности цикла пту
- •Вопросы для самоподготовки к главе 7
- •8. Циклы газотурбинных установок
- •8.1. Анализ тепловой экономичности разомкнутого цикла гту
- •8.1.1. Влияние параметров рабочего тела на тепловую экономичность идеального цикла гту
- •8.1.2. Влияние параметров рабочего тела на тепловую экономичность реального цикла гту
- •8.2. Регенеративный цикл гту
- •8.3. Регенеративный цикл гту с двухступенчатым сжатием и расширением рабочего тела
- •8.4. Эксергетический анализ гту
- •Вопросы для самоподготовки к главе 8
- •9. Циклы парогазовых установок
- •9.1. Цикл пгу с котлом-утилизатором
- •9.2. Цикл пгу с низконапорным парогенератором
- •9.3. Цикл пгу с высоконапорным парогенератором
- •9.4. Полузависимая пгу
- •Вопросы для самоподготовки к главе 9
- •10. Циклы холодильных установок и тепловых насосов
- •10.1. Цикл воздушной холодильной установки
- •Анализ тепловой экономичности обратимого цикла вху
- •Анализ тепловой экономичности реального цикла вху
- •10.2. Паро-компрессорная холодильная установка
- •Методика расчета идеального цикла пкху
- •Реальный цикл пкху
- •10.3. Паро-компрессорный цикл теплового насоса
- •Вопросы для самоподготовки к главе 10
- •11. Циклы двигателей внутреннего сгорания
- •11.1. Принцип работы поршневых двс
- •11.2. Термодинамический анализ циклов двс
- •11.3. Термодинамический анализ циклов двс с подводом теплоты к рабочему телу при постоянном объеме
- •11.4. Термодинамический анализ циклов двс с подводом теплоты к рабочему телу при постоянном давлении
- •11.5. Термодинамический анализ цикла двс со смешанным подводом теплоты к рабочему телу
- •11.6. Сравнение термодинамической экономичности циклов двс
- •Сравнение экономичности двс при одинаковых значениях q1 и допустимых величинах
- •Сравнение экономичности двс при одинаковых значениях q1 и Рмах
- •Вопросы для самоподготовки к главе 11
- •12. Циклы воздушных реактивных двигателей
- •12.1. Цикл прямоточного врд
- •12.2. Цикл турбокомпрессорного врд
- •Вопросы для самоподготовки к главе 12
- •Заключение
- •Заключение
- •Библиографический список
- •Оглавление
- •Чухин Иван Михайлович
- •Часть 2
- •153003, Г. Иваново, ул. Рабфаковская, 34.
- •153025, Г. Иваново, ул. Дзержинского, 39.
9.1. Цикл пгу с котлом-утилизатором
Простейшим
из циклов ПГУ является цикл с
котлом-утилизатором (ПГУ с КУ). Схема и
цикл вT,s-
диаграмме ПГУ с КУ представлены на рис.
9.3 и 9.4.
Газы, выходящие из газовой турбины ГТУ, поступают в котел-утилизатор ПТУ, где за счет их изобарного охлаждения нагревается вода и получается пар для паровой турбины. В КУ нет сжигания топлива, топливо сжигается только в камере сгорания ГТУ.
Соотношение расходов газов, выходящих из ГТУ (G), и водяного пара в ПТУ (D) в данной схеме находится в строгом соответствии, определяемым тепловым балансом котла-утилизатора
.
(9.1)
В выражении (9.1) повышение энтальпии в насосе ПТУ не учитывается.
Для расчета таких схем в удельных величинах вводится удельный расход газов ГТУ на 1 кг водяного пара ПТУ
.
(9.2)
Цикл
ПГУ с КУ вT,s-
диаграмме строится в соответствии с
величиной d,
т.е. для 1 кг водяного рабочего тела и dг
кг газового рабочего тела (рис.9.4). При
этом размерность удельной энтропии
данной диаграммы будет измеряться в
джоулях на килограмм пара и на Кельвин
(кДж/(кгпараК)).
Удельная теплота, подведенная к рабочему телу, в ПГУ с КУ соответствует процессу 2-3 и рассчитывается как
.
(9.3)
Удельная теплота, отведенная от рабочих тел, в данном цикле соответствует процессам: 5-1 (для газа) и вс (для водяного пара). Она рассчитывается как сумма
,
(9.4)
где q2г и q2п – удельные потери теплоты в газовом и паровом контурах соответственно.
Удельная работа газового цикла определяется как
,
(9.5)
где liк и liгт – удельные работы компрессора и газовой турбины.
Удельная работа парового цикла (без учета работы насоса) определяется как
.
(9.6)
Удельная работа цикла ПГУ определяется как сумма работ ГТУ и ПТУ
.
(9.7)
Внутренний абсолютный КПД ПГУ с КУ определяется обычным образом:
.
(9.8)
КПД ПГУ с КУ может достигать 55 %. Основным недостатком данной схемы является ограничение температуры пара на входе в паровую турбину (То) температурой уходящих газов ГТУ (Т4). В связи с этим температура tо не превышает 450 оС.
Особенностью ПГУ с КУ является нецелесообразность регенерации как в газовом, так и в паровом контурах. Регенерация в газовом контуре приведет к снижению температуры tо в паровом контуре, а регенерация в паровом контуре приведет к повышению температуры уходящих газов ГТУ Т5. Оба эти фактора вызовут снижение КПД ПГУ с КУ.
Второй особенностью ПГУ с КУ является отличие оптимальной степени повышения давления воздуха в компрессоре (оптПГУ) от опт простого цикла ГТУ. Величина оптПГУ > опт , нахождение ее численного значения требует оптимизационных расчетов с учетом практически всех параметров ПГУ.
9.2. Цикл пгу с низконапорным парогенератором
В данной схеме ПГУ газы ГТУ также сбрасываются в паровой котел, но в отличие от ПГУ с КУ в данном паровом котле, который называют низконапорным парогенератором (НПГ), происходит сжигание топлива. За счет сжигания топлива в НПГ в данной схеме нет ограничения температуры пара перед паровой турбиной, обусловленного температурой уходящих газов ГТУ. Поэтому температура пара на выходе из НПГ to>t4 , что позволяет использовать серийные ПТУ с to=540 оС.
Схема
и цикл вT,s-
диаграмме ПГУ с НПГ представлены на
рис. 9.5 и 9.6.
Соотношение газов, выходящих из ГТУ (G), и водяного пара в ПТУ (D) в данной схеме определяется тепловым балансом НПГ:
.
(9.9)
Расчет величины удельного расхода газов ГТУ на 1 кг водяного пара ПТУ в соответствии с выражением (9.9) выполняется по уравнению
.
(9.10)
Удельная теплота, подведенная к рабочему телу, в ПГУ с НПГ соответствует процессам 2-3 и 4-5, она рассчитывается как
.
(9.11)
Удельная теплота, отведенная от рабочих тел, в данном цикле соответствует процессам: 6-1 (для газа) и вс (для водяного пара). Она рассчитывается как сумма
,
(9.12)
где q2г и q2п – удельные потери теплоты в газовом и паровом контурах соответственно.
Удельная работа цикла ПГУ определяется как сумма работ ГТУ и ПТУ
.
(9.13)
Внутренний абсолютный КПД ПГУ с НПГ определяется обычным образом:
.
КПД ПГУ с НПГ может достигать 50 %. В таких установках может использоваться серийное паротурбинное оборудование с температурой to=550 оС и регенерацией. По типу таких схем ПГУ может быть проведена реконструкция морально устаревших ПТУ на низких параметрах пара. В этом случае не потребуется серьезной реконструкции парового котла.