Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мед_Физика.docx
Скачиваний:
108
Добавлен:
22.06.2017
Размер:
1.23 Mб
Скачать

18. Электропроводимость биологических тканей для постоянного и переменного токов. Ионная проводимость.

Электропроводимость тканей зависит от их функционального состояния и может быть использована как диагностический показатель. Так, например, при воспалении, когда клетки набухают, уменьшается сечение межклеточных соединений и увеличивается электрическое сопротивление.

Электропроводимость крови - 1,66 Ом*м

Электропроводность – способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (электронов, ионов и др.). Электропроводность (L) является величиной, обратной электрическому сопротивлению (R). При подаче на объект разности потенциалов (U) через него потечет электрический ток силой (I), величина которой пропорциональна электропроводности (L): I = L • U или I = U / R. Величина электропроводности зависит от количества электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность. Вещества по отношению к постоянному току делят на проводники и диэлектрики. Проводники электрические – вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Они делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма). Диэлектрики – твердые, жидкие и газообразные вещества, очень плохо проводящие электрический ток. Удельное сопротивление постоянному току у них составляет 108-1017 Ом • см. Особое место занимают полупроводники – вещества, электропроводность которых при обычных условиях весьма низка, но она резко возрастает с температурой. На их электропроводность влияют и другие внешние воздействия: свет, сильное электрическое поле, поток быстрых частиц и др. Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которые весьма неодинаковы в различных тканях, в связи с чем биологические объекты обладают свойствами как проводников, так и диэлектриков. В межклеточной жидкости с максимальным содержанием ионов удельная электропроводность достаточно высока и составляет 1 См • м-1. Напротив, в цитозоле, содержащем органеллы и крупные белковые молекулы, она понижается до 0,003 См • м-1. Удельная электропроводность плазмолеммы и внутриклеточных мембран еще ниже (1-3) • 10-5 См • м-1. Удельная электропроводность целых органов и тканей существенно меньше, чем составляющих их сред. Ее наибольшие величины (0,6-2,0 См • м-1) имеют жидкие среды организма (кровь, лимфа, желчь, моча, спинно-мозговая жидкость), а также мышечная ткань (0,2 См • м-1). Напротив, удельная электропроводность костной, жировой, нервной ткани, а в особенности грубоволокнистой соединительной ткани и зубной эмали чрезвычайно низкая (10-3-10-6 См • м-1). Электропроводность кожи зависит от толщины состояния дериватов и содержания воды. Сухая кожа является плохим проводником электрического тока, тогда как влажная хорошо проводит его. В связи с тем, что постоянный ток распространяется по пути наименьшего сопротивления, то состояние электропроводности тканей и тесно с ней связанная поляризация существенно сказываются на происходящих в организме изменениях при гальванизации (см.), лекарственном электрофорезе (см. Электрофорез лекарственных веществ) и других электротерапевтических методах.

При воздействии на ткани переменным током, установлено, что ток опережает напряжение. Значит, емкостное сопротивление (Хс) больше, индуктивного (ХL)

Идеальная модель представляет собой схему, состоящую из резисторов и конденсаторов.

Zпослед.=√(R2+1/(ωC)2)

Zпаралл..=R/√(1+RωC)2

Значительно более сложный характер носит электропроводность клеток и тканей для переменного тока. Так как биологические объекты обладают как проводимостью, так и емкостью, то они будут характеризоваться как активным, так и реактивным сопротивлением, в сумме составляющими импеданс объекта. Импеданс биологической ткани зависит от частоты тока: при увеличении частоты реактивная составляющая импеданса уменьшается. Частотно-зависимый характер емкостного сопротивления является одной из причин зависимости импеданса биологических объектов от частоты тока, т.е. дисперсии импеданса. Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода действия переменного тока. Если время, в течение которого электрическое поле направлено в одну сторону, больше времени релаксации какого-либо вида поляризации, то поляризация достигает своего максимального значения и вещество будет характеризоваться постоянными значениями диэлектрической проницаемости и проводимости. До тех пор, пока полупериод переменного тока больше времени релаксации, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть максимального значения. После этого диэлектрическая проницаемость начинает уменьшаться с частотой, а проводимость возрастать. При значительном увеличении частоты данный вид поляризации практически будет отсутствовать, а диэлектрическая проницаемость и проводимость снова станут постоянными величинами. При изучении частотных зависимостей сопротивления и емкости биологических объектов было обнаружено три области дисперсии: ?, ? и ?. ?-Дисперсия занимает область низких частот, примерно до 1 кГц. Ее объясняют поверхностной поляризацией клеток. По мере увеличения частоты переменного тока эффект поверхностной поляризации уменьшается, что проявляется как уменьшение диэлектрической проницаемости и сопротивления ткани. B-Дисперсия занимает более широкую область частот: 103-107 Гц. В прошлом для объяснения дисперсии диэлектрической проницаемости и сопротивления в данной области обращались к теориям дипольной и макроструктурной поляризации. В настоящее время для объяснения ?-дисперсии развивается электрохимическая (электролитическая) теория поляризации биологических объектов. Ценность данного подхода состоит в том, что он позволяет учитывать при описании электрических свойств биологических тканей клеточную проницаемость и наличие ионных потоков через мембрану. Y-Дисперсия диэлектрической проницаемости и проводимости наблюдается на частотах выше 1000 МГц. Уменьшение диэлектрической проницаемости в данном диапазоне обусловлено ослаблением эффектов поляризации, вызываемой диполями воды. Общая картина частотной зависимости электрических параметров сохраняется для всех тканей. Некоторые индивидуальные особенности ее определяются размерами и формой клеток, величиной их проницаемости, соотношением между объемом клеток и межклеточных пространств, концентрацией свободных ионов в клетках, содержанием свободной воды и др. Изменение состояния клеток и тканей, их возбуждение, изменение интенсивности метаболизма и других функций клеток приводит к изменению электропроводности биологических систем. В этой связи изменение электропроводности используют для получения информации о функциональном состоянии биологических тканей, для выявления воспалительных процессов, изменения проницаемости клеточных мембран и стенок сосудов при патологии или действии на организм различных факторов, для оценки кровенаполнения сосудов органов и тканей и др. Дисперсия электрических свойств тканей, обусловленная состоянием заряженных частиц, играет важную роль в действии на организм лечебных физических факторов, в особенности переменных токов, электромагнитных полей и их составляющих. Они определяют их проникающую способность, селективность и механизмы поглощения энергии факторов, первичные механизмы их действия на организм.

I=Δq/Δt

j=I/S

J=υn, υ – скорость направления частиц

J=qJ=qnυ

qE=rυ

υ=bE, где b - подвижность ионов

j=nqa(b++b-)E

jS= nqa(b++b-)US/l

R=l/S nqa(b++b-)

ϒ=1/ρ= nqa(b++b-)

Удельная проводимость ϒ тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводимость.

Вопрос №19. Воздействие на живые ткани электрическим полем УВЧ – частот.

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также в свободном виде при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может наблюдаться благодаря его силовому воздействию на заряженные тела.

Биофизические явления УВЧ. Действие на организм человека электромагнитных полей определяется частотой излучения(>500), его интенсивностью, продолжительностью и характером действия, индивидуальными особенностями организма. Спектр электромагнитных полей включает низкие частоты до 3 Гц, промышленные частоты от 3 до 300 Гц, радиочастоты от 30 Гц до 300 МГц, а также относящиеся к радиочастотам ультравысокие (УВЧ) частоты от 30 до 300 МГц и сверхвысокие (СВЧ) частоты от 300 МГц до 300 ГГц.

Общее влияние электрического поля УВЧ. Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное электрическое поле вызывает нагрев диэлектриков (хрящей, сухожилий и др.) за счет токов проводимости и за счет переменной поляризации. Выделение теплоты может приводить к перегреванию, особенно тех тканей и органов, которые недостаточно хорошо снабжены кровеносными сосудами (хрусталик глаза, желчный пузырь, мочевой пузырь). Наиболее чувствительны к биологическому воздействию радиоволн центральная нервная и сердечно-сосудистая системы.

Изменение сердечно-сосудистой системы. Под влиянием электрического поля УВЧ на сосуды плавательной перепонки вначале происходит едва заметное сужение сосудов, которое сменяется хорошо выраженным их расширением. Только через 5-10 минут после прекращения действия электрического поля УВЧ нормальный тонус сосудов восстанавливается.

УВЧ-терапия

Метод электролечения, основанный на воздействии на организм больного преимущественно ультравысокочастотного электромагнитного поля.

УВЧ оказывает противовоспалительное действие за счет улучшения крово- и лимфообращения, дегидратации тканей и уменьшения экссудации, активирует функции соединительной ткани, стимулирует процессы клеточной пролиферации, что создает возможность ограничивать воспалительный очаг плотной соединительной капсулой. УВЧ оказывает антиспастическое действие на гладкую мускулатуру желудка, кишечника, желчного пузыря, ускоряет регенерацию нервной ткани, усиливает проводимость импульсов по нервному волокну, понижает чувствительность концевых нервных рецепторов, следовательно, способствует обезболиванию, уменьшает тонус капилляров, понижает артериальное давление, вызывает брадикардию.

Этот метод лечения применяют при различных острых и хронических воспалительных процессах внутренних органов (бронхиты, холециститы, пневмонии), опорно-двигательного аппарата, уха, горла, носа (ангины, отиты), периферической нервной системы (невриты), женской половой сферы, дистрофических процессах и острых нагноениях (фурункулы, карбункулы, абсцессы, флегмоны). Qуд=E2/g=J*E

Чем больше коэффициент перед Е2,тем больше нагревание.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете Физика