Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Разное / Всякое / Физикка / Лекции / Лекция 16 - Сенсорные системы..doc
Скачиваний:
43
Добавлен:
19.06.2017
Размер:
207.36 Кб
Скачать

2. Связь интенсивности раздражителя с характеристиками потенциалов действия. Функции сжатия. Отображение качественных характеристик раздражителей.

Сигналы одной модальности могут различаться по силе (точнее – по интенсивности). В какой же характеристике потенциалов действия отображаются эти различия? Нетрудно понять, что в соответствии с законом «всё или ничего» все потенциалы действия в данном нервном волокне одинаковы, поэтому величина (амплитуда) и форма ПД не могут служить сигнальными признаками для различения сильных и слабых раздражителей. Эксперименты показали, что от интенсивности раздражителя зависит частота следования потенциалов действия в нервном волокне, отходящем от рецептора. Чем сильнее раздражитель, тем короче интервалы между потенциалами действия, и тем выше частота следования ПД.

Очень важно, что зависимость следования ПД от интенсивности раздражителя почти всегда нелинейная, то есть между частотой и интенсивностью нет прямой пропорциональности. Легко понять, что так и должно быть, потому что интенсивность большинства раздражителей может меняться в очень широких пределах. Например, интенсивность самого громкого звука, ещё не повреждающего орган слуха, больше интенсивности самого тихого (порогового) звука в 1014 раз! Ясно, что частота нервных импульсов (потенциалов действия) не может измениться в такое колоссальное число раз. Между частотой и интенсивностью должна существовать нелинейная функциональная зависимость, при которой интервал частот сжат во много раз по сравнению с интервалом интенсивностей. Такую функцию так и называют – функция сжатия.

Во многих случаях функция сжатия близка к логарифмической функции:

,

где ν – частота следования ПД, I – интенсивность раздражителя, Iо – пороговая интенсивность (минимальная ощущаемая интенсивность раздражителя), k – коэффициент, зависящий от других характеристик раздражителя (кроме интенсивности), а также от выбора единиц измерения. (Эта формула называется законом Вебера – Фехнера). Легко видеть, что логарифмическая функция – это очень эффективная функция сжатия. Например, если интенсивность раздражителя возрастёт в1010 раз (колоссальное число!), частота ПД увеличится только на 10k единиц (lg 1010 = 10). Так как коэффициент k обычно не очень велик, изменение частоты составит десятки, максимум – сотни герц, что очень мало по сравнению с изменением интенсивности.

Другое важное свойство логарифмической функции легко получить, если взять производную:dν/dI = k(lgI - lgI0)΄ = k.(1/I) или = k(dI/I).

Отсюда видно, что абсолютное изменение частоты пропорционально относительному изменению интенсивности. Но именно такое соотношение гарантирует наиболее целесообразную точность восприятия интенсивности: при больших интенсивностях нет надобности оценивать интенсивность с малой абсолютной ошибкой. Понятно, что при покупке на 10 рублей разница в 1 рубль (10%) достаточно существенна, но вряд ли кто-нибудь обратит внимание на такую разницу, покупая машину за 100 000 р. (она составит 0,001%). Другими словами, при оценке интенсивности раздражителя практически значимы не абсолютные, а относительные величины; именно это и обеспечивает логарифмическая функция.

Другим вариантом функции сжатия может быть степенная зависимость:

ν = k.In ,

где показатель степени n < 1 (то есть, другими словами, величина I стоит под корнем). Например, если n = 0,2 (корень пятой степени), то при изменении интенсивности в 1010 раз частота изменится в (1010)0,2 = 100,2.10 = 100 раз, то есть опять таки изменение частоты много меньше изменения интенсивности.

Надо заметить, что из-за большой сложности биофизических процессов в сенсорных системах никакая простая математическая функция не может в точности отобразить связь частоты нервных импульсов с интенсивностью раздражителя. Особенно большие отклонения наблюдаются при очень малых или при очень больших интенсивностях. Однако, в области средних интенсивностей (которые на практике встречаются чаще всего) логарифмическая или степенная функции достаточно хорошо отображают результаты, получаемые в эксперименте или при клиническом обследовании.

Другой способ получения информации об интенсивности раздражителя связан с тем, что почти всегда эта информация передаётся не от одного изолированного рецептора, а от большого их числа по многим волокнам. Порог возбуждения у разных рецепторов различен, поэтому чем больше интенсивность раздражителя, тем больше рецепторов участвует в передаче сигнала, и тем больше клеток в нервных центрах будет возбуждено. Связь между интенсивностью раздражителя и возбуждением нервных центров тоже нелинейная; есть данные, что здесь лучше подходит степенная функция. Однако, этот вопрос пока недостаточно изучен.

Отображение качественных характеристик раздражителей одной модальности

Кроме интенсивности, раздражители одной модальности различаются по качественным признакам. Например, свет от источника может иметь разный цвет; пища может быть разного вкуса и т.п. Одним из способов различения качественных признаков является специализация рецепторных клеток. Например, на поверхности языка находятся четыре типа вкусовых рецепторов, реагирующих соответственно на сладкое, кислое, горькое и солёное. Всё разнообразие вкусовых ощущений возникает в результате различных сочетаний сигналов, поступающих в ЦНС от этих четырёх видов рецепторов. Далее будет рассказано про восприятие различных световых и звуковых раздражителей. О других механизмах оценки качественных различий пока что известно очень мало, хотя несомненно, что они существуют.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.