Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

зачет

.pdf
Скачиваний:
34
Добавлен:
13.06.2017
Размер:
2.61 Mб
Скачать

такое же, как и индукционного ваттметра. Разница состоит в том, что счетчик не имеет пружин, создающих противодействующий момент, отчего диск счетчика может свободно вращаться. Стрелка н шкала ваттметра заменены в счетчике, счетным механизмом. Постоянный магнит, служащий в ваттметре для успокоения, в счетчике создает тормозящий момент. Трехфазный переменный ток. Активную энергию трехфазного переменного тока можно измерить с помощью двух однофазных счетчиков, включенных в сеть по схеме, аналогичной схеме двух ваттметров. Удобнее измерить энергию трехфазным счетчиком активной энергии, объединяющим в одном приборе работу двух однофазных счетчиков. Схема включения двухэлементного трехфазного счетчика активной энергии та же, что и схема соответствующего ваттметра.

В четырехпроводной сети трехфазного тока для измерения активной энергии применяют схему, аналогичную схеме трех ваттметров, или употребляют трехэлементный трехфазный счетчик. Подсчет энергии по показаниям счетчиков, включенных по приведенным выше схемам, производится так же, как и подсчет мощности по тем же схемам. В сетях высокого напряжения включение счетчиков производится при помощи измерительных трансформаторов напряжения и тока.

33. Устройство, назначение и принцип действия трансформатора. Структурная схема однофазного трансформатора.

Трансформатор статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты.Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Устройство

и принцип работы

 

 

 

 

 

 

 

 

Схема

однофазного

двухобмоточного

 

трансформатора представлена ниже.

 

 

На схеме изображены основные части:

 

ферромагнитный сердечник, две обмотки на

 

сердечнике. Первая обмотка и все величины

 

которые

 

к

ней

относятся

(i -ток,

 

 

 

 

 

 

 

 

1

 

u -напряжение,

n -число

витков,Ф –

 

1

 

 

1

 

 

 

1

 

магнитный поток) называют первичными,

 

вторую

обмотку

и

соответствующие

 

величины - вторичными.

 

 

 

 

Первичную обмотку включают в сеть с

 

переменным

напряжением,

её

 

намагничивающая сила i1n1 создает в

 

магнитопроводе

переменный

магнитный

 

поток

Ф,

который

сцеплен

с

обеими

обмотками и в них индуцирует ЭДС e = -n dФ/dt, e = -n dФ/dt. При синусоидальном изменении магнитного

1

1

2

2

потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков,

Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков

E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого

хода. В этом случае i = 0, а u =E , ток i мал и мало падение напряжения в первичной обмотке, поэтому

2

2

2

1

u ≈E и отношение ЭДС можно заменить отношением напряжений u /u = n /n = E /E = k. Из этого можно

1

1

1 2 1 2 1 2

сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на

входе η = P2/P1.

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0,5 или 0,35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым.

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.

34. Условное обозначение трансформаторов в радиосхемах и распределительных электросетях. Уравнение электрического состояния трансформатора.

На схемах трансформатор обозначается следующим образом:

Центральная толстая линия соответствует сердечнику, 1 — первичная обмотка (обычно слева), 2 и 3 — вторичные обмотки. Число полуокружностей не нормируется и обычно, в очень грубом приближении, символизирует число витков обмотки (больше витков — больше полуокружностей, но без строгой пропорциональности).

В общем случае схематически сердечник трансформатора изображают линией, имеющей такую же толщину, что и линии полуокружностей в его обмотках. Если же есть надобность подчеркнуть на схеме материал или особенности строения сердечника, то его обозначения могут несколько различаться. Так, ферритовый сердечник обозначают жирной линией. Сердечник с магнитным зазором — тонкой линией,

имеющей разрыв посередине. Для обозначения сердечника из магнитодиэлектрика используют тонкую пунктирную линию. Если применяется немагнитный сердечник, например медный, то рядом с тонкой непрерывной линией записывают обозначение материала сердечника способом, представленным в таблице Менделеева (Cu).

При обозначении трансформатора жирной точкой около вывода могут быть указаны начала катушек (не менее чем на двух катушках, знаки мгновенно действующей ЭДС на этих выводах одинаковы). Применяется при обозначении промежуточных трансформаторов в усилительных (преобразовательных) каскадах для подчёркивания синили противофазности, а также в случае нескольких (первичных или вторичных) обмоток, если соблюдение «полярности» их подключения необходимо для правильной работы остальной части схемы или самого трансформатора. Если начала обмоток не указаны явно, то предполагается, что все они направлены в одну сторону (после конца одной обмотки — начало следующей).

В схемах трёхфазных трансформаторов «обмотки» располагают перпендикулярно «сердечнику» (Ш-образно, вторичные обмотки напротив соответствующих первичных), начала всех обмоток направлены в сторону «сердечника».

Уравнения электрического и магнитного состояния

Значение ЭДС, индуктируемой в первичной обмотке, находится на основании закона электромагнитной индукции:

(1.3)

.

Если первичная обмотка трансформатора подключена к синусоидальному напряжению, то и ЭДС, противодействующая этому напряжению, также будет синусоидальна:

(1.4)

.

Приравняем (1.3) и (1.4) друг к другу и выразим dФ.

.

Интегрируя, получаем:

, где .

При и

(1.5)

.

Выражение (1.5) называют формулой трансформаторной ЭДС. Оно устанавливает зависимость величины индуцируемой в обмотке ЭДС, от числа витков обмотки, частоты напряжения и амплитуды магнитного потока в сердечнике трансформатора.

Так как первичная и вторичная обмотки пронизываются одним и тем же потоком, то по аналогии можем записать:

.

Отношении Е1 к Е2 называется коэффициентом трансформации.

(1.6)

.

Это один из основных параметров трансформатора.

35. Автотрансформаторы: электрическая схема, преимущества, недостатки.

Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

36. Многообмоточные однофазные и трехфазные трансформаторы.

Однофазные трансформаторы небольшой мощности применяют в качестве сварочных, измерительных, испытательных, специального назначения и для бытовых нужд.

Мощные однофазные силовые трансформаторы служат для трансформации электрической энергии трехфазного тока и для питания специальных промышленных установок. Простейший однофазный трансформатор (рис. 1) состоит из рамообразной магнитной системы, включающей два стержня 5, верхнее 4 и нижнее 5 ярма, обмоток высшего 1 и низшего 2 напряжения.

Левый стержень, если смотреть на трансформатор со стороны выведенных от обмоток ВН концов (отводов), принято обозначать буквой А, правый — X. Чтобы двухстержневую магнитную систему однофазного трансформатора использовать наиболее рационально и трансформатор конструктивно был более компактным, обмотки ВН и НН как бы делят на две части и размещают их на стержнях А и X. Соединив между собой параллельно или последовательно отдельные части обмоток ВН и со-

ответственно НН, от обмоток, размещены на стержне А, выводят их «начала», а на стержне X — их «концы».

Трансформацию трехфазного тока однофазными трансформаторами осуществляют следующим образом: устанавливают рядом три однофазных трансформатора, образующих трехфазную группу, и внешние зажимы обмоток ВН и НН (при трехобмоточных трансформаторах и СН) соединяют в трехфазные электрические схемы (звезда

— звезда, звезда — треугольник). Полученная трехфазная трансформаторная группа имеет общую электрическую схему, а электромагнитная система каждого трансформатора работает раздельно.

Рис. 1. Устройство простейшего однофазного трансформатора

Рис. 2. Получение трехфазного трансформатора из трех однофазных: а — схема объединения трех магнитных систем с фазными обмотками в одну трехфазную, б — схема пространственной симметричной магнитной системы трехфазного трансформатора

В трехфазном трансформаторе электрические и электромагнитные системы трех однофазных трансформаторов объединены в одну.

Физическую сторону такого совмещения схематично можно пояснить следующим образом. Если три магнитные системы однофазных трансформаторов с обмотками ВН и НН, размещенными на одном стержне (рис. 2), составить под углом 120° друг к другу, свободные от обмоток стержни примкнуть — состыковать в один, соединить обмотки в

трехфазные схемы и подать на одну из них трехфазное напряжение, то и получится трехфазный трансформатор с общей электрической и магнитной системой, состоящей из трех стержней с обмотками и одного центрального стержня без обмоток. Однако исходя из известного положения электротехники о том, что сумма мгновенных значений токов и магнитных полей трехфазной системы равна нулю, магнитный поток в центральном стержне будет отсутствовать, а следовательно, в нем нет необходимости, поэтому его из конструкции магнитной системы удаляют. Полученная при этом трехстержневая пространственная магнитная система (рис. 2, б) является симметричной — у нее длина путей основного

магнитного поля каждой фазы одинакова.

Рис. 3. Пространственная (а) и

плоская несимметричная магнитная система трехфазного трансформатора с обмотками (б): 1 — элементы навитой ленточной магнитной системы; 2 — стеклобандаж, скрепляющий составной стержень; 3 — изоляционная прокладка стыка стержня

Симметричная магнитная система наиболее совершенна, однако трудности, связанные с технологией изготовления и ремонта трансформаторов с такой

магнитной системой, ограничивают ее применение; она используется только в трансформаторах некоторых серий мощностью в основном до 250 кВ-А. На рис. 3, а изображена одна из трехфазных пространственных магнитных систем, применяемая в трансформаторах I и частично II габаритов. Она состоит из трех ленточных магнитных систем, составленных под углом 60° и скрепленных стеклобандажной лентой. Каждая из них навита (намотана) непрерывной (без стыков) электротехнической лентой. Чтобы форма составленного стержня была близка к кругу и в местах стыка. Так как навитая магнитная система неразъемная, то обмотки с помощью специальных станков приходится наматывать («вматывать») непосредственно на стержне. У навитых магнитных систем переход из стержней в ярма плавный, совпадающий с направлением магнитного потока, тем самым исключаются добавочные потери в местах перехода стержней в ярма под прямым углом при применении анизотропной стали. Кроме того, процесс сборки трансформаторов с пространственными магнитными системами может быть полностью механизирован. Однако, по ранее указанным причинам, они нашли применение только в трансформаторах небольшой мощности.

Для упрощения конструкции и технологии сборочно-разборочных операций в трехфазном трансформаторе применяют главным образом плоскую несимметричную магнитную систему (рис. 3, б). Она состоит из трех стержней, расположенных в одной плоскости, и перекрывающих их ярм — верхнего и нижнего. Из рис. 3, б видно, что длина пути А—Б магнитного потока среднего стержня меньше длин пути потока крайних стержней. Асимметрия магнитной системы несколько сказывается на значении токов холостого хода отдельных фаз.

Фазные обмотки на стержнях трехфазной магнитной системы размещаются так же, как и на однофазной, — концентрически соосно и соединяются в трехфазные схемы.

Стоимость изготовления и монтажа одного трехфазного трансформатора ниже стоимости трех однофазных на ту же суммарную мощность. Современные силовые трансформаторы преимущественно имеют трехфазное исполнение. Масса трехфазного трансформатора на 30—35% меньше массы трех однофазных трансформаторов. Кроме того, он экономичнее в работе и обслуживании.

Применение в отдельных случаях однофазных силовых трансформаторов объясняется тем, что одновременное повреждение нескольких фаз маловероятно. Поэтому достаточно иметь один запасной однофазный трансформатор, чтобы в случае аварии заменить поврежденную фазу. Однако в настоящее время однофазные трансформаторы применяют только для очень крупных мощностей, где транспортировка и установка трехфазных трансформаторов, имеющих большие массы и размеры, вызывает значительные трудности.

37. Измерительные трансформаторы тока и напряжения

Типы измерительных трансформаторов. Измерительные трансформаторы подразделяют на два типа

— трансформаторы напряжения и трансформаторы тока. Первые служат для включения вольтметров и других приборов, реагирующих на значение напряжения (например, катушек напряжения ваттметров, счетчиков, фазометров и различных реле). Вторые служат для включения амперметров и токовых катушек указанных приборов.

Измерительные трансформаторы изготовляют мощностью от пяти до нескольких сотен вольт-ампер; они рассчитаны для совместной работы со стандартными приборами (амперметрами на 1; 2; 2,5 и 5 А,

вольтметрами на 100 и

В).

 

 

 

 

Трансформатор напряжения. Его выполняют в видедвухобмоточного понижающего

трансформатора

(рис. 3.33,а). Для

обеспечения

безопасности работы обслуживающего персонала вторичную обмотку

тщательно

изолируют от первичной и заземляют.

 

 

 

 

 

 

 

Рис. 3.33. Схема включения (а) и векторная

диаграмма

 

 

 

измерительного трансформатора напряжения (б)

 

 

 

 

 

 

 

Так как сопротивления обмоток вольтметров и других приборов,

 

 

 

подключаемых к трансформатору напряжения

, велики, то он

 

 

 

практически работает в режиме холостого хода. В этом режиме

 

 

 

можно с достаточной степенью точности считать, чтоU = U' =U k.

 

 

 

 

l

2

2

 

 

 

 

В действительности ток холостого хода I (а также небольшой

ток

 

 

 

0

 

 

 

 

 

 

 

нагрузки) создает в трансформаторе падение напряжения,

 

 

 

поэтому, как видно из векторной диаграммы (рис. 3.33,

б),

и между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате при измерениях образуются некоторые погрешности.

В измерительных трансформаторах напряжения различают два вида погрешностей: а) относительную погрешность напряжения

б)угловую погрешность δu; за ее значение принимают угол между векторами и — . Она влияет на результаты измерений, выполненных с помощью ваттметров, счетчиков, фазометров и прочих

приборов, показания которых зависят не только от силы тока и напряжения, но и от угла сдвига фаз

между ними. Угловая погрешность считается положительной, если вектор опережает вектор . В зависимости от значения допускаемых погрешностей стационарные трансформаторы напряжения подразделяют на три класса точности: 0,5; 1 и 3, а лабораторные — на четыре класса: 0,05; 0,1; 0,2 и 0,5. Обозначение класса соответствует значению относительной погрешности уи при номинальном

напряжении Ulном. Угловая их погрешность составляет 20... 40 угл. мин.

Выпускаемые промышленностью трансформаторы напряжения сохраняют класс точности при изменении первичного напряжения от 80 до 120% номинального.

Рис. 3.34. Схема включения измерительного трансформатора тока (а), общий вид проходного изолятора (б) и векторная диаграмма (в):

1— медный стержень (первичная обмотка); 2 — вторичная обмотка; 3 — магнитопровод

Для уменьшения погрешностей уи иδи сопротивленияобмоток трансформатора и делают по возможности малыми, а магнитопровод выполняют из высококачественнойстали достаточно большого поперечного сечения, чтобы в рабочем режиме он не был насыщен. Благодаря этому обеспечивается значительное уменьшение тока холостого хода.

Трансформатор тока. Его выполняют в виде двухобмоточного повышающего трансформатора (рис. 3.34,а) или в видепроходного трансформатора, у которого первичной обмоткой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку. Первичной обмоткой трансформатора служит медный стержень, проходящий внутри изолятора (рис. 3.34, б).

Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно

малы. Поэтому он практически работает в режиме короткого замыкания, при котором токи I1 и во много раз больше токаI0, и с достаточной степенью точности можно считать, что

В действительности из-за наличия тока холостого хода в рассматриваемом трансформаторе

и между векторами этих токов имеется некоторый угол, отличный от 180° (рис. 3.34, в). Это создает относительную токовую погрешность

и угловую погрешность, измеряемую углом δi, между векторами и . Погрешность δi считается

положительной, если вектор — опережает вектор .

38. Устройство, принцип действия и области применения 3-х фазных асинхронных двигателей

Устройство трехфазных асинхронных двигателей (статор и ротор асинхронных двигателей)

Трехфазный асинхронный двигатель состоит из неподвижного статора и ротора. Три обмотки размещены в пазах на внутренней стороне сердечника статора асинхронного двигателя. Обмотка же ротора асинхронного двигателя не имеет электрического соединения с сетью и с обмоткой статора. Начало и концы фаз обмоток статора присоединяют к зажимам в коробке выводов по схеме звезда или треугольник.

Асинхронные двигатели в основном различаются устройством ротора, который бывает двух типов: фазный или короткозамкнутый. Обмотка короткозамкнутого ротора асинхронного двигателя выполняется на цилиндре из медных стержней и называется "беличьей клеткой". Торцевые концы стержней замыкают металлическими кольцами. Пакет ротора набирают из электротехнической стали. В двигателях меньшей мощности стержни заливают алюминием. Фазный ротор и статор имеют трехфазную обмотку. Фазы обмотки соединяют звездой или треугольником и ее свободные концы выводят на изолированные контактные кольца.

Принцип работы трехфазного асинхронного двигателя

Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя, возникает электромагнитная пара сил, которая стремится повернуть ротор в направлении движения электромагнитного поля статора. Ротор приходит во вращение приобретает определенную скорость, магнитное поле и ротор вращаются с разными скоростями или асинхронно. Применительно к асинхронным двигателям, скорость вращения ротора всегда меньше скорости вращения магнитного поля статора.

39. Особенности асинхронного двигателя с короткозамкнутым ротором и с фазным ротором

Двигатель с фазным ротором

Ротор фазного типа принципиально не отличается обмoткой от статора. Это трехфазная обмотка, концы которой соединены по схеме «звезда». Свободные концы обмоток подключены к токоприемным кольцам. Кольца контактируют с проводником посредством щеток и поэтому есть

Соседние файлы в предмете Электротехника