
- •Часть 1. Основные понятия теории множеств. Операции над множествами. Бинарные отношения
- •Глава 1. Аксиоматический метод
- •Введение
- •1.1. Понятие аксиоматического метода
- •1.2. Правила аксиоматического построения теории
- •Глава 2. Теория множеств
- •Введение
- •2.1. Понятие множества
- •2.2. Способы задания множеств
- •2.3. Подмножества и равенство множеств
- •2.4. Операции над множествами
- •2.5. Алгебраические свойства операций над множествами
- •2.7. Алгебраические операции с множествами
- •Часть 2. Случайные события и операции над ними. Теоремы сложения и умножения вероятностей событий. Аксиомы теории вероятностей
- •Глава 1. Основные формулы комбинаторики
- •Введение
- •1.1. Перестановки
- •1.2. Размещения
- •1.3. Сочетания
- •Глава 2. Случайные события
- •Введение
- •2.1. Виды случайных событий
- •2.2. Алгебра случайных событий
- •2.3. Классическое определение вероятности
- •2.4. Теоремы сложения и умножения вероятностей
- •2.4.1. Сложение вероятностей несовместных событий
- •2.4.2. Умножение вероятностей независимых событий
- •2.4.3. Вероятность появления хотя бы одного события
- •2.4.4.Умножение вероятностей зависимых событий. Условная вероятность
- •2.5.5. Сложение вероятностей совместных событий
- •2.5.6. Формула полной вероятности
- •2.5.7. Формула Байеса
- •Часть 3. Дискретные и непрерывные случайные величины. Законы распределения
- •Глава 1. Понятие случайной величины
- •Глава 2. Дискретная случайная величина
- •2.1. Закон распределения дискретной случайной величины
- •2.2. Числовые характеристики дискретных случайных величин
- •Глава 3. Непрерывная случайная величина
- •3.1. Функция распределения вероятностей и плотность распределения вероятностей непрерывной случайной величины
- •3.2. Числовые характеристики непрерывной случайной величины
- •3.3. Некоторые частные распределения непрерывной случайной величины
- •3.4. Вероятность попадания в заданный интервал нормальной случайной величины
- •3.5. Вычисление вероятности заданного отклонения нормальной случайной величины
- •Литература
М = {1, 2, 3}, N = {1, 2, 4, 6, 9}, K = {4, 6, 9}.
Найти:
1) M ∩ N; 2) M ∩ K; 3) N ∩ К; 4) M K; 5) N М; 6) K N.
Часть 2. Случайные события и операции над ними. Теоремы сложения и умножения вероятностей событий. Аксиомы теории вероятностей
Глава 1. Основные формулы комбинаторики
Введение
Встречаются задачи, которые имеют несколько различных вариантов решений. Чтобы выбрать правильный из них, надо перебрать все возможные варианты. Задачи, требующие такого решения, называют комбинаторными. Раздел математики, в котором исследуются различные задачи на перебор, называется комбинаторикой.
Комбинаторика – это раздел математики, в котором для конечных множеств рассматриваются различные соединения элементов: перестановки, размещения, сочетания. В задачах, связанных с выборкой элементов множества, необходимо подсчитать количество различных комбинаций этих элементов. В теории вероятностей приходится подсчитывать общее число исходов эксперимента и число благоприятных исходов. Такой подсчет сводится к перебору возможных вариантов.
1.1. Перестановки
Задачи, связанные с перестановками, относятся к задачам комбинаторики. Например, перестановка книг на полках. В таких задачах подсчитывается количество возможных вариантов перестановок, причем в каждой комбинации должны присутствовать все объекты строго по одному разу.
Определение 1: Перестановками называют комбинации, состоящие из одних и тех же n – различных элементов и отличающиеся только порядком их расположения.
Рn = n! = 1 2 3 … n. |
(1.1) |
где: Рn – количество перестановок;
n! = 1 · 2 · 3· … · (n - 1) · n – произведение всех натуральных чисел от 1 до n включительно есть «n-факториал».
Пример. Сколько трехзначных чисел можно составить из трех цифр: 3, 5, 7, с учётом использования каждой цифры строго по одному разу?
Решение. Количество трехзначных чисел в данном примере определяется по формуле перестановок (1.1) и равно: Р3=1 2 3=6.
1.2. Размещения
Если в выборках из n объектов по m объектов порядок их следования по условию задачи имеет значения, то имеют дело с «задачей о рассаживании»: группу из n человек следует рассадить в аудитории за каждым столом по m-человек (m<n). Число способов рассаживания определяется числом размещений.
12