Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ пособие для студента.pdf
Скачиваний:
25
Добавлен:
26.07.2016
Размер:
480.74 Кб
Скачать

Мегамир: современные астрофизические и космологические концепции

Во второй половине XX в. астрономия вступила в период научной революции, которая изменила способ астрономического познания – на смену классическому пришел «неклассический» способ астрономического познания

Мегамир или космос современная наука рассматривает как системную организацию в форме: планет и планетных систем, возникших вокруг звезд; звезд и звездных систем, – галактик; системы галактик – Метагалактики.

В этой связи термин «Вселенная» приобретает более узкое специфически научное толкование. На современном этапе эволюции Вселенной вещество в ней находится в основном в звездном состоянии; 97% вещества в нашей Галактике сосредоточено в звездах. В других звездных системах (галактиках) предполагается, что «звездная субстанция» составляет более 99,9% их массы. Большинство галактик имеет эллиптическую или спиралевидную форму. Сами галактики образуют так называемые «облака» или «скопления галактик», содержащих до несколько тысяч отдельных звездных систем. Распределение галактик в пространстве указывает на существование определенной упорядоченной системы – Метагалактики. Метагалактика или гигантская система галактик, включает в себя все известные космические объекты.

Классическая ньютоновская и первая эйнштейновская космологические модели Вселенной

С появлением науки в ее современном понимании на смену мифологическим и религиозным воззрениям приходят научные представления о происхождении Вселенной. Вселенная – от толкования как места вселения человека, благодаря ее доступности эмпирическому наблюдению и размышлению о ней в настоящее время изучается наукой, называемой космологией или наукой о космосе. Космология нацелена на открытие упорядоченности нашего мира, т.е. законов его функционирования как единого упорядоченного целого.

Выводы космологии называются моделями происхождения и развития Вселенной. Если наука (естествознание имеет дело только с тем, что эмпирически проверяемо современными научными методами) формулирует универсальные законы на основе экспериментальных данных, то Вселенная в этом смысле уникальна, так как к ней методологические правила науки остаются неприемлемыми. Все заключения о происхождении и развитии Вселенной не являются законами, а лишь космологическими моделями, т.е. возможными вариантами объяснения.

Первым ученым, который обнаружил силы космической значимости, был И. Ньютон, первооткрыватель закона всемирного тяготения. По Ньютону: если предположить, что космическое вещество первоначально было равномерно распределено по всему бесконечному космическому пространству, то различные его части сгущались бы, образуя Солнце и, как он считал, неподвижные звезды, а также планеты; светимость же звезд он объяснял ссылкой на Творца [Гуревич Л.Э., Чернин А.Д. Происхождение галактик и звезд. М.: Наука, 1987]. Воззрения Ньютона относятся к 1692 г. Позднее они неоднократно воспроизводились философом И. Кантом и

16

математиком П. Лапласом, но все ограничивалось пранаучными, сугубо гипотетическими рассуждениями.

В классической ньютоновской космологической модели Вселенной вопрос об ее эволюции не ставился. Вселенная представлялась всесуществующей и бесконечной в абсолютном пространстве и времени. В такой Вселенной изменяться могут только конкретные космические системы, но не «мир в целом».

Такое постулирование бесконечности и стационарности Вселенной логически приводит к парадоксам: гравитационному и фотометрическому, которые не разрешимы в рамках классической астрономии.

Суть гравитационного: если Вселенная бесконечна, значит в ней бесконечное число небесных тел, то сила тяготения должна быть тоже бесконечно большой и вся Вселенная должна сколлапсировать, т.е. сжаться до объекта, подобного «черной дыре», а не существовать вечно.

Суть фотометрического: если существует бесконечное число небесных тел, то должна быть бесконечная светимость неба, но этого не наблюдается.

Все современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой пространство и время определяются распределением гравитационных масс во Вселенной, из этого следует так называемая «кривизна пространства» и связь кривизны с плотностью массы (энергии). Свойства Вселенной как целого (ее прошлое, настоящее, будущее) ставятся наукой в зависимость от средней плотности материи в ней. Математическая теория тяготения Эйнштейна предлагает несколько решений «устройства» Вселенной, т.е. обуславливает наличие многих космологических моделей Вселенной.

Первая из них была разработана самим А. Эйнштейном в 1917 г.

Он разделял убеждение Ньютона, что звезды по отношению друг к другу находятся в стационарном положении. Но объяснить такое положение звезд одними силами тяготения затруднительно. Поэтому Эйнштейн ввел в уравнение общей теории относительности специальный космологический член – лямбду (λ), который должен был в математической форме отобразить наличие сил отталкивания неведомой природы. Прием, использованный Эйнштейном, в науке называется ad hoc (ад хок), что в переводе с латинского означает «для данного случая». Эйнштейн использовал данный прием за неимением лучшего. Но вскоре ему представилась возможность отказаться от него.

В такой модели Вселенной локальные искривления пространства-времени гравитирующими массами приводят к глобальному искривлению, делающему Вселенную замкнутой по пространственным координатам. В этой цилиндрической модели Эйнштейна временная координата не искривляется (время равномерно течет от прошлого к будущему). Впоследствии цилиндрическая модель была усовершенствована голландским астрофизиком Виллем де Ситтером, предположившим на основании наблюдаемого красного смещения, что время в удаленных частях Вселенной течет замедленно (искривление по временной координате) - модель замкнутой гиперсферы. Обе эти стационарные модели Вселенной имеют два недостатка: необходимость предположить существование дополнительных взаимодействий, препятствующих сжатию Вселенной под действием гравитирующих масс, и проблема “утилизации” света, испущенного звездами в предшествующие моменты времени в замкнутое пространство.

17

В эйнштейновской модели Вселенной материя распределена в среднем равномерно, а гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Время существования Вселенной бесконечно, т.е. не имеет ни начала, ни конца, а пространство безгранично, но конечно. Вселенная в целом стационарна, бесконечна во времени и безгранична в пространстве.

Фридмановские модели Вселенной

В 1922 - 1924 гг. молодой математик и геофизик А.А. Фридман (Советская Россия), изучая уравнения общей теории относительности Эйнштейна, показал, что они приводят к гравитационной неустойчивости Вселенной, в зависимости от плотности вещества в ней она либо расширяется, либо сжимается. Фридман рассмотрел три решения уравнений Эйнштейна, описывающих Вселенную с «расширяющимся» пространством. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине (ρкр 10-29 г/см3), мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния. Если плотность меньше критической, пространство обладает геометрией Лобачевского и также неограниченно расширяется. И, наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния.

Решающее значение для выводов Фридмана имело открытие Э. Хаббла (американский астроном Эдвин Пауэлл Хаббл (1889-1953)), который обнаружил факт разлета скоплений звезд, галактик (1929). Так называемое «красное смещение» приходящих от галактик излучений свидетельствовало о их удалении от Земли. Хаббл вывел соотношение:

V = H r

V – скорость удаления галактики, H = 75 – 80 км/с Мпк – постоянная Хаббла, r – расстояние до галактики в парсеках (1 пк 3,1 1016 м).

Смысл постоянной Хаббла в следующем, величина, обратная постоянной Хаббла, есть возраст Вселенной. Расчеты показывают, что если принять Н 75 км/с Мпк, то возраст Вселенной t = 1/H 13,5 млрд. лет.

Но средняя плотность вещества во Вселенной неизвестна, и мы сегодня не знаем, в каком из пространств Вселенной мы живем.

На сегодняшний день модель расширяющейся Вселенной, предложенная Фридманом, наиболее признаваема научным сообществом (красное смещение и конечная светимость неба объясняются эффектом Доплера, и нет необходимости во введении компенсирующих гравитацию взаимодействий), глобально искривленной изза наличия гравитирующих масс. И сейчас обсуждаются в основном две ее модификации:

1.Замкнутая модель (геометрический аналог - расширяющаяся гиперсфера) предсказывает постепенное замедление расширения вследствие торможения гравитационными силами с последующим переходом к сжатию.

2.Открытая модель (геометрический аналог – «седло») замедляющееся расширение, происходящее бесконечно долго.

18

В настоящее время предпочтение отдается открытой модели, поскольку оценки средней плотности вещества во Вселенной, сделанные на основе наблюдаемой концентрации звезд, показывают, что гравитационные силы не способны остановить происходящее с наблюдаемой скоростью разбегания. Оценки могут существенно измениться в пользу закрытой модели при наличии в космосе скрытых масс несветящегося вещества (например, за счет ненулевой массы покоя нейтрино).

Следует также специально отметить, что для модели расширяющейся Вселенной характерно отсутствие какого-либо центра «разбегания» галактик. Расширяется в целом межгалактическая среда. «Разбегаются все галактики. С какой бы галактики не наблюдалась картина космического расширения, всякий она выглядит единообразно: чем дальше от места наблюдения находится галактика, тем с большей скоростью она удаляется от этого места». И так называемый горизонт видимости расположен на расстоянии не большем, чем может пройти свет за 13 млрд. лет.

Модель горячей Вселенной или Большого Взрыва

В основе современных представлений об эволюции Вселенной лежит модель горячей Вселенной, или «Большого Взрыва» (Big Bang), предложенная в 1948 г. Основы ее были заложены в трудах американского физика русского происхождения Дж. (Г.А.) Гамова и его сотрудников в конце 40-х гг. 20-го в. Основа теории такова: физическая Вселенная образовалась в результате гигантского взрыва примерно 15-20 млрд. лет назад, когда все вещество и энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 1025 г/см3 и температурой свыше 1016 К. Такое представление соответствует и модели горячей Вселенной. Правда, науке неизвестно, откуда взялось такое гигантское количество изначальной энергии? Но принятое научным сообществом расширение Вселенной оказывается естественным следствием теории Большого Взрыва и это следует расценивать, как огромный мировоззренческий прорыв в интеллектуальном мире.

По предположению Г.А. Гамова все элементы Вселенной образовались в результате ядерных реакций в первые моменты после Большого Взрыва. По современным же представлениям около 98% существующего в природе гелия образовалось в первые секунды после Большого Взрыва.

С эволюционной точки зрения Вселенная проходит определенные этапы, в ходе которых образуются химические элементы в результате ядерных реакций и их структуры.

Данная модель Вселенной сейчас обосновывается такими экспериментальными наблюдениями.

1.Излучение спектральных линий звезд показывает, метагалактика имеет единый химический состав (77% водорода, 22% гелия, 0,8% кислорода, 0,1% железо и 0,1% на остальные элементы).

2.Спектры элементов удаленных галактик демонстрируют систематическое смещение в красную часть спектра. Смещение линейно растет с увеличением расстояния до галактик.

3.Из космоса регистрируется однородное и изотропное излучение наполняющее

все космическое пространство (оно соответствует излучению черного тела с температурой 2,7 К, его плотность составляет примерно 450 фотонов/см3.

19

4. Распределение галактик в метагалактике соответствует некоторой постоянной плотности, порядка 0,3 барионов/м3. Для сравнения: в нашей Галактике средняя концентрация вещества 1 атом/см3.

5. По косвенным выводам из анализа процессов радиоактивного распада в метеоритах, следует, что некоторые компоненты химического состава метеоритов, возможно, возникли 14-24 млрд. лет назад.

Одним из экспериментальных подтверждений модели горячей Вселенной стало открытие в 1965 г. реликтового излучения с температурой около 3 К.

Горячая Вселенная. В первые моменты температура Вселенной была столь высока, что в ней могли существовать лишь самые легкие элементарные частицы: фотоны, нейтрино и т.д. Быстрое расширение горячего сжатого “газа” вело к его охлаждению. Уже на первых секундах расширения стало возможным образование электронов и протонов, существующих в виде горячей плазмы и сильно взаимодействующих друг с другом и излучением, на долю которого приходилась основная доля энергии во Вселенной. Таким образом, на ранней стадии, длящейся около 1 млн. лет во Вселенной преобладали электромагнитные и ядерные взаимодействия.

Спустя указанный срок температура упала до величины, допускающей рекомбинацию электронов с протонами в нейтральные атомы водорода. С этого момента взаимодействие излучения с веществом практически прекратилось, доминирующая роль перешла к гравитации.

Возникшее на стадии горячей Вселенной и постепенной остывающее в результате ее расширения излучение дошло до нас в виде реликтового фона.

Сам факт возможности моделирования процессов, происходящих в первые секунды и минуты существования Вселенной, следует рассматривать как огромное достижение современного естествознания – оно приближает нас к самому акту «сотворения мира». Хотя представления о первых секундах жизни Вселенной во многом основаны на гипотезах и гипотетических экстраполяциях, но физические условия, существовавшие в то время, когда возраст Вселенной составлял 10-4 с, когда температура достигала 1012 К, а вся наблюдаемая Вселенная была «сжата» до размеров Солнечной системы, сегодня можно экспериментально воспроизводить на современных ускорителях элементарных частиц.

Раннюю Вселенную можно на языке физики представить как гигантскую лабораторию природы, в которой энергия, высвободившаяся в результате Большого Взрыва, пробудила физические процессы, не воспроизводимые в земных условиях.

Холодная Вселенная. На последующей стадии так называемой “холодной” Вселенной на фоне продолжающегося расширения и остывания вещества стали возникать гравитационные неустойчивости: за счет флуктуаций плотности водородного газа стали возникать зоны его уплотнения, притягивающие к себе газ из соседних областей и еще больше усиливающие собственное гравитационное поле.

Самоорганизация вещества во Вселенной (сложная неравновесная система, описываемая нелинейными уравнениями гравитации) в конечном итоге привела к возникновению крупномасштабной квазиупорядоченной межгалактической ячеистой структуры, а ее дальнейшая фрагментация дала начало будущим галактикам и

20