Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
sobrannye_lektsii_1_2.docx
Скачиваний:
1090
Добавлен:
30.03.2016
Размер:
3.08 Mб
Скачать

1.Основные этапы математического моделирования

Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев(признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

Вторым этапом моделирования является выбор типа математической модели, что является важнейшим моментом, определяющим направление всегоисследования. Обычно последовательно строится несколько моделей.Сравнение результатов их исследования с реальностью позволяет установитьнаилучшую из них. На этапе выбора типа атематической модели при помощианализа данных поискового эксперимента устанавливаются: линейность илинелинейность, динамичность или статичность, стационарность илинестационарность, а также степень детерминированности исследуемого объектаили процесса.Процесс выбора математической модели объекта заканчивается еепредварительным контролем, который также является первым шагом на путик исследованию модели. При этом осуществляются следующие видыконтроля (проверки): размерностей; порядков; характера зависимостей;экстремальных ситуаций; граничных условий; математической замкнутости;физического смысла; устойчивости модели.

Контроль размерностей сводится к проверке выполнения правила,согласно которому приравниваться и складываться могут только величиныодинаковой размерности.

Контроль порядков величин направлен на упрощение модели. При этом пределяются порядки складываемых величин и явно малозначительныеслагаемые отбрасываются.

Анализ характера зависимостей сводится к проверке направления искорости изменения одних величин при изменении других. Направления искорость, вытекающие из ММ, должны соответствовать физическому смыслузадачи.

Анализ экстремальных ситуаций сводится к проверке наглядного смысла решения при приближении параметров модели к нулю или бесконечности.

Контроль граничных условий состоит в том, что проверяетсясоответствие ММграничным условиям, вытекающим из смысла задачи. Приэтом проверяется, действительно ли граничные условия поставлены и учтеныпри построении искомой функции и что эта функция на самом делеудовлетворяет таким условиям.

Анализ математической замкнутости сводится к проверке того, что ММдает однозначное решение.

Анализ физического смысла сводится к проверке физическогосодержания промежуточных соотношений, используемых при построении ММ.

Проверка устойчивости модели состоит в проверке того, чтоварьирование исходных данных в рамках имеющихся данных о реальномобъекте не приведет к существенному изменению решения.

2. Понятие о вычислительном эксперименте

В настоящее время основным способом исследования ММ и проверки еекачественных показателей служит вычислительный эксперимент.

Вычислительным экспериментом называется методология и технологияисследований, основанные на применении прикладной математики и ЭВМ кактехнической базы при использовании ММ. Вычислительный экспериментосновывается на создании ММ изучаемых объектов, которые формируютсяс помощью некоторой особой математической структуры, способной отражатьсвойства объекта, проявляемые им в различных экспериментальных условиях, ивключает в себя следующие этапы.

1. Для исследуемого объекта строится модель, обычно сначала физическая,фиксирующая разделение всех действующих в рассматриваемом явлениифакторов на главные и второстепенные, которые на данном этапе исследованияотбрасываются; одновременно формулируются допущения и условияприменимости модели, границы, в которых будут справедливы полученныерезультаты; модель записывается в математических, терминах, как правило,в виде дифференциальных или интегро-дифференциальных уравнений;создание ММ проводится специалистами, хорошо знающими данную областьестествознания или техники, а также математиками, представляющими себевозможности решения математической задачи.

2. Разрабатывается метод решения сформулированной математическойзадачи. Эта задача представляется в виде совокупности алгебраическихформул, по которым должны вестись вычисления и условия, показывающиепоследовательность применения этих формул; набор этих формул и условийносит название вычислительного алгоритма. Вычислительный экспериментимеет многовариантный характер, так как решения поставленных задач частозависят от многочисленных входных параметров. Тем не менее, каждыйконкретный расчет в вычислительном эксперименте проводится прификсированных значениях всех параметров. Между тем в результате такогоэксперимента часто ставится задача определения оптимального наборапараметров. Поэтому при создании оптимальной установки приходитсяпроводить большое число расчетов однотипных вариантов задачи,отличающихся значением некоторых параметров. В связи с этим приорганизации вычислительного эксперимента можно использовать эффективные численные методы.

3. Разрабатываются алгоритм и программа решения задачи на ЭВМ.Программирование решений определяется теперь не только искусством иопытом исполнителя, а перерастает в самостоятельную науку со своимипринципиальными подходами.

4. Проведение расчетов на ЭВМ. Результат получается в виде некоторойцифровой информации, которую далее необходимо будет расшифровать.Точность информации определяется при вычислительном экспериментедостоверностью модели, положенной в основу эксперимента, правильностьюалгоритмов и программ (проводятся предварительные «тестовые» испытания).

5. Обработка результатов расчетов, их анализ и выводы. На этом этапемогут возникнуть необходимость уточнения ММ (усложнения или, наоборот,упрощения), предложения по созданию упрощенных инженерных способоврешения и формул, дающих возможности получить необходимую информациюболее простым способом.

Вычислительный эксперимент приобретает исключительное значение в техслучаях, когда натурные эксперименты и построение физической моделиоказываются невозможными. Особенно ярко можно проиллюстрироватьзначение вычислительного эксперимента при исследовании влияния городскойзастройки на параметры распространения радиосигнала. В связис интенсивным развитием систем мобильной связи данная задача в настоящеевремя является особенно актуальной. С целью снижения затрат при частотно-территориальном планировании производится оптимизация частотно-территориального плана с учетом таких факторов как рельеф местности,конфигурация городской застройки, атмосферные воздействия. Кроме этого,с учетом динамичности развития города необходимо постоянное уточнениесоответствующих моделей. То, что принято называть уровнем сигнала (средняянапряженность электромагнитного поля) представляет собой результатсложного взаимодействия физических процессов, протекающих прираспространении сигнала: прохождение сигнала сквозь здания и сооружения;воздействие на сигнал помех искусственного и естественного происхождения;атмосферная рефракция сигнала; отражения сигнала от зданий и от земнойповерхности; потери энергии сигнала в осадках и др. В данном случаеокружающую среду можно исследовать, строя соответствующую ММ, котораядолжна позволять предсказывать уровень сигнала при заданной конфигурациизастройки, рельефе местности, погодных условиях и т. п. Масштабы средыраспространения сигнала настолько грандиозны, что эксперимент даже в одномкаком-то регионе требует существенных затрат.

Таким образом, глобальный эксперимент по исследованиюраспространения сигнала возможен, но не натурный, а вычислительный,проводящий исследования не реальной системы (окружающей среды), а ее ММ.

В науке и технике известно немало областей, в которых вычислительныйэксперимент оказывается единственно возможным при исследовании сложныхсистем.

Пригодность ММ для решения задач исследования характеризуется тем,в какой степени она обладает так называемыми целевыми свойствами,основными из которых являются адекватность, устойчивость ичувствительность.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]