
- •Введение.
- •Цели, задачи и структура курса.
- •Предмет компьютерной графики.
- •Сферы применения компьютерной графики.
- •Отображение информации.
- •Проектирование.
- •Моделирование.
- •Интерфейс пользователя.
- •Графическая система.
- •Объект и наблюдатель.
- •Визуализация изображений.
- •Растровая визуализация.
- •Векторная визуализация.
- •Цвет
- •Свет и изображение.
- •Глаз человека.
- •Характеристики цвета.
- •Цветовые модели.
- •Глубина цвета
- •Палитра
- •Координаты.
- •Прямоугольная система координат на плоскости.
- •Прямоугольная система координат в 3-x мерном пространстве.
- •Прямоугольная система координат в n-мерном пространстве.
- •Полярная система координат.
- •Графическое представление.
- •Трёхмерное расширение.
- •Цилиндрическая система координат.
- •Сферическая система координат.
- •Координаты в матричном виде.
- •Произведение матриц.
- •Преобразование координат.
- •Аффинные преобразования координат.
- •Аффинные преобразования координат на плоскости.
- •Однородные координаты.
- •Аффинные преобразования координат в трехмерном пространстве.
- •Преобразования объектов.
- •Аффинные преобразования объектов на плоскости.
- •Трехмерные аффинные преобразования объектов.
- •Композиция преобразований.
- •Эффективность преобразований.
- •Базовые растровые алгоритмы.
- •Связность.
- •Алгоритмы вывода прямой линии
- •Прямое вычисление координат.
- •Алгоритм Брезенхэма.
- •Алгоритм вывода окружности.
- •Алгоритм Брезенхэма построения окружности.
- •Растеризация многоугольника.
- •Алгоритм со списком реберных пересечений.
- •Алгоритм заполнения со списком активных ребер.
- •Заливка с затравкой.
- •Алгоритмы отсечения.
- •Отсечение отрезков.
- •Алгоритм Коэна-Сазерленда.
- •FC-алгоритм.
- •Алгоритм Лианга-Барски.
- •Двумерный алгоритм Кируса — Бека
- •Проверка выпуклости многоугольника и определение нормалей
- •Алгоритм с использованием векторных произведений
- •Разбиение не выпуклых многоугольников
- •Отсечение многоугольника
- •Алгоритм Сазерленда-Ходгмана
- •Простой алгоритм отсечения многоугольника
- •Алгоритм отсечения многоугольника Вейлера-Азертона
- •Удаление невидимых линий и поверхностей.
- •Алгоритм удаления поверхностей с Z-буфером.
- •Алгоритм разбиения области Варнока.
- •Алгоритм трассировки лучей.

Компьютерная графика.
(называется зенитом или широтой, значения находятся в интервале от 0 до 180°). То есть, сферические координаты, это тройка (r, φ, θ), где r — расстояние от центра координат, φ— угол от оси x (как и в плоских полярных координатах), θ — широта.
Лучшим контекстом применения полярных координат являются случаи, тесно связанные с направлением и расстоянием от некоторого центра. Кроме того, многие физических системы — такие, которые содержат тела, движущиеся вокруг центра, либо явления, распространяющиеся из некоторого центра — гораздо проще моделировать в полярных координатах.
Полярную систему координат часто применяют в навигации, поскольку пункт назначения можно задать как расстояние и направление движения от отправной точки. Например, в авиации, для навигации применяют несколько изменённую версию полярных координат. В этой системе, обычно используемой для навигации, луч 0°
называют направлением 360, а углы отсчитываются в направлении по часовой стрелке. Направление 360 соответствует магнитному северу, а направления 90, 180, и 270 соответствуют магнитным востоку, югу и западу. Так, самолёт, летящий 5 морских миль на восток можно описать как самолёт, летящий 5 единиц в направлении 90.
Координаты в матричном виде.
Координаты точки на плоскости можно задать так называемым вектор-столбцом:
[xy]
В 3-х мерном пространстве:
[x] y z
Далее мы будем использовать матрицы для работы с координатами.
Произведение матриц.
Для двух матриц А размером (m×n) и В размером (n×р):
a11 |
a12 |
a1n |
] |
b11 |
b12 |
b1p |
] |
|
A= a21 |
a22 |
a2n |
, B= b21 |
b22 |
b2p |
, |
||
[am1 am2 amn |
[bn1 |
bn2 |
bnp |
|
произведением матриц является матрица С = А×В размером (m×р):
-21-