
- •Электромеханические переходные процессы (7 cеместр)
- •Тема лекции. Общие сведения об электромеханических ПереходныХ процессАх. Общая оценка устойчивости режима электрической системы
- •1. Основные положения, принимаемые при анализе
- •2. ХАрактеристики системы, содержащей любое число линейных элементов
- •3. Общая оценка устойчивости режима электрической системы
- •Лекция 2
- •Раздел 3. Практические критерии статической устойчивости
- •1. Практический критерий статической устойчивости простейшей системы
- •2. Практический критерий статической устойчивости ад
- •3. Устойчивость двух станций, работающих на общую нагрузку
- •4. Устойчивость многомашинной системы по условиям текучести или сползания режима
- •5. Станция (эквивалентный генератор), питающая через лэп нагрузку соизмеримой мощности
- •6. Косвенные (вторичные) критерии статической устойчивости простейшей системы
- •Лекция 3 Тема. Практический критерий динамической устойчивости. Метод площадей
- •1. Практический критерий динамической устойчивости
- •2. Определение предельного угла отключения
- •3. Проверка устойчивости при наличии автоматического повторного включения (апв) линий электропередачи.
- •Лекция 4 Тема. Переходные процессы при больших возмущениях
- •1. Протекание процессов при больших возмущениях задачи исследования и основные допущения
- •2. Качественная оценка относительного движения ротора генератора в наиболее характерных случаях
- •3. Решение дифференциальных уравнений относительного движения ротора генератора
- •4. Численное интегрирование уравнения движения.
- •Лекция 5 Тема. Переходные процессы при малых возмущениях. Метод малых колебаний
- •1. Основные понятия и определения
- •3. Анализ Статической устойчивости нерегулируемой электрической системы
- •Анализ Статической устойчивости нерегулируемой электрической системы с учетом электромагнитных переходных процессов в обмотке возбуждения. САмовозбуждение.
- •. Анализ Статической устойчивости нерегулируемой электрической системы с учетом электромагнитных переходных процессов в обмотке возбуждения. САмовозбуждение.
- •Лекция 6 Тема. Статическая устойчивость с учетом действия регуляторов возбуждения и скорости вращения генератора
- •1. Особенности работы различных арв. Характеристики мощности генераторов с арв
- •2. Анализ Статической устойчивости регулируемой электрической системы
- •Лекция 7 Тема. Переходные процессы в узлах нагрузки
- •1. Характеристики элементов нагрузки. Толчкообразные нагрузки Влияние толчкообразной нагрузки на работу системы электроснабжения
- •2. Резкие изменения режима в системах электроснабжения. Наброс нагрузки на электродвигатель
- •3. Переходные процессы при пуске синхронных и асинхронных электродвигателей
- •Лекция 8
- •1. Изменение частоты при набросе мощности
- •2. Статические характеристики системы при изменении частоты
- •3. Динамические характеристики системы при изменении частоты. Лавина частоты
- •Лекция 9 Тема. Асинхронные режимы, ресинхронизация и результирующая устойчивость. Мероприятия по повышению статической и динамической устойчивости
- •1. Характеристика асинхронных режимов в электрических системах
- •2.Возникновение асинхронного режима
- •3.Параметры элементов электрических систем при асинхронных режимах
Лекция 2
Раздел 3. Практические критерии статической устойчивости
Цель лекции – изучить практические критерии статической устойчивости и их применение при анализе электромеханических переходных процессов.
План лекции:
1. Практический критерий статической устойчивости простейшей системы
2. Практический критерий статической устойчивости АД
3. Практический критерий статической устойчивости двух станций, работающих на общую нагрузку
4. Практический критерий статической устойчивости многомашинной системы
5. Практический критерий статической устойчивости станции, питающей через ЛЭП нагрузку соизмеримой мощности
1. Практический критерий статической устойчивости простейшей системы
Рассмотрим характеристику системы (рис.1), состоящую из синхронного генератора, работающего через реактивное сопротивление х на шины неизменного напряжения.
Рис.1.
Известно, что в такой системе параметром П, от которого зависит изменение режима и по которому должна проверяться устойчивость, будет угол δ – угол расхождения векторов э.д.с. Е и напряжения U. Тогда ∂Р∑/∂δ < 0 (где Р∑ = Рт – Рэл). Критерию dР∑/dδ < 0 можно дать простую физическую трактовку. В устойчивых режимах при случайном малом увеличении угла δ на величину ∆δ (возмущении режима) появляются избытки электромеханического (тормозящего) момента над механическим (вращающим): ∆Мт = ∆Р/ω0 – и отклонившийся на ∆δ ротор возвращается в исходное (устойчивое) состояние. Обычно механическая мощность не зависит от угла, и тогда восходящая часть характеристики электромагнитной мощности Рэл = Рm sinδ отвечает устойчивым режимам, а падающая – неустойчивым.
Критерий устойчивости простейшей электрической системы, режим которой зависит только от изменений угла, имеет вид ∂Р∑/∂δ < 0, или при Рт = const имеет вид ∂Р/∂δ >0.
2. Практический критерий статической устойчивости ад
Рассмотрим асинхронный двигатель, подключенный к узловой точке системы, имеющей неизменное напряжение U. В этом случае устойчивость проверяется по параметру s (скольжение двигателя) и соотношениям его механической (тормозящей) Рмех и электрической (вращающей) Рэл мощности. Тогда ∂Р∑/∂s < 0, где Р∑ = Рмех – Р. Физическая трактовка заключается в рассмотрении изменения соотношений моментов ускоряющего (электромагнитного) и тормозящего (механического) при возмущении режима. Возмущением является случайное изменение скольжения на ∆s и электрический момент ускоряет ротор (уменьшает скольжение), а не тормозит (не уменьшает скорость).
Устойчивыми будут режимы, при возмущении которых факторы, стремящиеся нарушить их, изменяются менее интенсивно, чем факторы, противодействующие этому нарушению.
Геометрическая интерпретация этого положения сводится к утверждению, что в устойчивых режимах характеристика F = φ(П) фактора, нарушающего режим, идет более полого, чем характеристика фактора, восстанавливающего режим.
В критических режимах характеристики, графически представляющие изменение фактора, стремящегося нарушить режим, и фактора, восстанавливающего режим, не пересекаются, а только касаются друг друга.
Всякий существующий устойчивый режим последующим его изменением – увеличением нагрузки, или у т я ж е л е н и е м, – может быть сделан неустойчивым.