Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом Тимошенко Владислава.doc
Скачиваний:
124
Добавлен:
29.03.2016
Размер:
1.07 Mб
Скачать
    1. Пленки диоксида олова

Оксид олова SnO2— бинарное неорганическое соединение, белые кристаллы, нерастворимые в воде. Диоксид олова по своему химическому характеру является больше кислотным. Тонкие пленки SnO2могут быть получены различными способами, такими как химического осаждения из паровой фазы, напыления, золь-гель процесса, и брызгами пиролиза. Метод магнетронного распыления, по сравнению с другими методами осаждения, является наиболее удобным методом для получения пелнок диоксида олова из-за своей высокой скорости осаждения, экономической выгоды, хорошей воспроизводимостью, и возможностью использования [4].

Диоксид олова широко используется во многих областях благодаря своим хорошим оптических и электрических свойств. SnO2является своего рода прозрачным полупроводникомn-типа с широкой запрещенной зоной (3,6-4,0 эВ) [1]. Процент парциального давления кислорода может варьировать в диапазоне от 1% до 10%. Введение кислорода будет подавлять осаждение и рост пленок SnO2, а удельное сопротивление пленки уменьшается с увеличением давления кислорода (рисунок 9).

Рисунок 9 – Толщина пленок SnO2в зависимости от парциального давления кислорода

Размером зерна можно управлять с помощью выбора технологических параметров синтеза газочувствительного слоя. Проводимость наблюдается при температуре 400 – 1000°С. При увеличении размера зерна, возрастает проводимость. Это объясняется тем, что обедненный слой становится меньше половины зерна, то есть внутри зерна возникает проводящий канал. Для тонких пленок, толщина которых сопоставима с длиной Дебая, наблюдается увеличение чувствительности при уменьшении толщины. Газочувствительность слоев возрастает при уменьшении толщин, а при дальнейшем уменьшении толщины газочувствительность снижается. Данный эффект возможно связан с возрастанием сопротивления газочувствительного слоя за счет уменьшения подвижности в слое и нарушения его связности. При этом величина подвижности не зависит от температуры, но находится в сильной зависимости от состава окружающей среды. Для получения высокой газочувствительности после синтеза оксидных газочувствительных слоев необходим их высокотемпературный отжиг в атмосфере кислорода. Этот процесс тепловых воздействий приводит к увеличению размера кристаллитов (рисунок 10).

Рисунок 10 – Зависимость размера зерна от времени отжига при разных температурах

Из рисунка видно, что размер зерна во время отжига быстро увеличивается только в начальный период времени. Далее размер зерна слабо меняется от времени отжига. Из этого можно сделать вывод, что каждой температуре отжига соответствует определенный размер зерна. Размером кристаллитов, получаемых после отжига, можно управлять, вводя дополнительные легирующие элементы. Добавки La, Ba, P снижают конечный размер кристаллитов, а введение CaO приводит к увеличению размера зерна. При этом следует учесть, что введение дополнительных примесей также влияет на концентрацию свободных носителей заряда, а значит, влияет на длину Дебая в пленке. Именно соотношение между длинной Дебая и размером кристаллитов является критерием малости зерна. При уменьшении размера зерна происходит уменьшение температуры, при которой наблюдается максимум чувствительности к водороду. Это можно объяснить увеличением доли активного кислорода на поверхности из-за уменьшения энергии адсорбции кислорода, вызванным уменьшением размера кристаллитов. Когда размер кристаллитов, из которых состоит газочувствительный слой, много больше, чем длина Дебая, то проводимость определяется преодолением свободными электронами потенциальных барьеров на границе зерен. Из этого следует вывод, что для слоев, в которых размер зерен много больше длины Дебая, газочувствительность не должна зависеть от размера зерна. При уменьшении размера зерна, когда он становится сравнимым, но большим, чем длина Дебая, происходит проникновение обедненного слоя внутрь зерна. Поэтому при уменьшении размера зерна проводимость становится более чувствительной к зарядовому состоянию поверхности. То есть в этом случае при уменьшении размера зерна должно происходить увеличение газочувствительности [4].

Также, уменьшение размера зерна приводит к увеличению удельной площади поверхности, при этом адсорбция в большей степени влияет на объемные свойства Увеличение газочувствительности при уменьшении размера зерна можно объяснить тем, что длина Дебая становится сравнима с размером зерна. Таким образом, высокую чувствительность можно получить либо уменьшением размера зерен, либо увеличением длины Дебая, изменяя уровень легирования слоя. Размер кристаллитов влияет на физические свойства пленок. Например, оптическая ширина запрещенной зоны, измеренная в тонкой пленке SnO2 имеющей мелкозернистую структуру, существенно отличается от ширины запрещенной зоны монокристаллов SnO2(3.54 эВ) и составляет порядка 3 эВ, что объясняется как нестехиометрическим составом пленки, так и наличием хвостов состояний зон, вызванных высокой дефектностью пленки [5].