Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 1_РЕД_2.doc
Скачиваний:
328
Добавлен:
27.03.2016
Размер:
10.44 Mб
Скачать

5.5. Перестановки и размещения без повторений групп одинаковых объектов

Пусть на n местах располагают n объектов, которые, в отличие от обычных перестановок, образуют s групп одинаковых объектов. В каждой группе i (1 £ i £ s) число объектов обозначим ki. При этом ki ³ 1, k1 + k2 + … + ks = n). С качественной точки зрения перемена местами одинаковых объектов не изменяет набор объектов.

Формула для подсчета общего количества N(C(А)) вариантов всех различных получаемых комбинаторных множеств C(А) может быть получена следующим образом. Вначале предполагаем, что все объекты для размещения различны. При этом получаем: . Затем применяемs раз правило учета сходства и различия к группам одинаковых объектов. После деления N(C(А)) на факториалы чисел k1, k2, …, ks, получим итоговую расчетную формулу:

Пример 1. В финал соревнований вышли 6 участников. Определить число всех различных возможных вариантов победителей олимпиады, если организаторы планируют присудить 1 первое, 2 вторых и 3 третьих места. Порядок участников, занявших одинаковое место, не важен.

Решение. Задача сводится к определению количеств перестановок, в которых есть группы одинаковых объектов – участники, занявшие одинаковое (с точки зрения награды) место. Ее параметры:

s = 3 (по результатам финала будут выделены 3 различных группы участников): k1 = 1 (первое место), k2 = 2 (второе место), k3 = 3 (третье место),

n = 6.

По общей формуле число возможных вариантов победителей и призеров:

N = 6! / (1! × 2! × 3!) = 60.

Ответ:60.

Пример 2. Определить число всех различных возможных сообщений длиной в 8 букв, в которых содержатся 3 буквы «a», 2 буквы «б», 2 буквы «и», 1 буква «р».

Решение. Задача сводится к расчету числа вариантов перестановок длины n = 8, в которых есть s = 4 группы одинаковых объектов. В них содержатся следующие числа объектов:

k1 = 3, k2 = 2, k3 = 2, k4 = 1.

По общей формуле число данных сообщений равно: N = 8! / (3! × 2! × 2! × 1!) = 1680.

Ответ:1680.

Если число размещаемых объектов k меньше числа мест n (k < n), то для расчета их общего числа используется аналогичная формула:

Вывод ее аналогичен первой формуле с учетом того, что вместо перестановок вначале определяются размещения без повторенийk различных объектов на n местах .

Пример 3. В 8 пронумерованных лунках размещают 2 одинаковых белых и 3 одинаковых черных шара. Найти общее число вариантов размещения.

Решение. В задаче присутствуют две группы одинаковых объектов, в которых числа k1 = 2, k2 = 3. Общее число размещаемых шаров k = k1 + k2 = 2 + 3 = 5. Поэтому задача сводится к определению числа размещений без повторений из 8 по 5 с двумя группами одинаковых объектов (k1 = 2, k2 = 3):

Ответ:560.

5.6. Сочетания

Сочетаниями из n по k называют расположения k одинаковых объектов на n различных местах, когда на одно место можно поместить только один объект. Общее количество N(C(А)) всех таких возможных попарно различных сочетаний обозначают как C(n, k) либо .

Поскольку сочетание из n по k можно представить как частный случай размещения без повторений одной группы одинаковых объектов (s = 1, k = s), то расчет общего числа сочетаний выполняют по формуле

Расчетная формула для сочетаний изn по k выводится из формулы для размещений без повторения с использованием правила учета сходства–различия. Используя в качестве промежуточной формулу для размещений без повторений и обратную схему (рис. 5.6) для правила учета сходства-различия, получим схему на рис. 5.9:

Рис. 5.9. Расчетная схема для расчета числа сочетаний изn по k

Замечание. Все формулы для подсчета чисел основных случаев расположения k объектов в п. 5.3–5.6 выведены при условии, что все n мест, отведенных для размещения объектов, различны. Однако если это условие не выполняется и все n мест одинаковы, то для фиксированного набора объектов при k  n число мест не имеет значения и вариант размещения данного набора только один.

Например, необходимо подсчитать яблоки. Для этого их в произвольном порядке высыпают на стол. С точки зрения решаемой задачи не важно, в какое место стола, какое яблоко попадает, важны лишь свойства размещаемого набора – в данном случае количественные. Для задачи подсчета яблок вариант их расположения на столе один.

Пример 1. Найти, сколькими вариантами можно разместить 4 одинаковых шара на 7 местах в случаях, когда: 1) все места различны; 2) все места неразличимы между собой.

Решение. В случае 1) получаем подсчета общего числа сочетаний для 4 одинаковых шаров на 7 различных местах:

В случае 2) все возможные варианты размещения одинаковы, поэтому N = 1.

Ответ:1)35; 2)1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]