
- •Физика ядерной медицины
- •Предисловие
- •Введение
- •Список литературы
- •Оглавление
- •Соотношение между единицами измерения физических величин
- •Классификация излучений
- •Строение атома и ядра
- •2.1. Основные определения атомной структуры
- •Модель атома Резерфорда
- •Модель атома водорода Бора
- •Многоэлектронные атомы
- •Строение ядра
- •Ядерные реакции
- •Радиоактивность
- •Виды радиоактивного распада
- •Генераторные системы
- •Характеристики поля излучения
- •3.1. Флюенс и плотность потока
- •Керма и поглощенная доза
- •Взаимодействие излучений с веществом
- •4.1. Сечения взаимодействия
- •Взаимодействие заряженных частиц с веществом
- •4.2.1. Общее описание взаимодействия
- •4.2.2. Взаимодействие с орбитальными электронами
- •4.2.3. Взаимодействие с ядрами атомов
- •4.2.4. Тормозная способность
- •4.2.5. Ограниченная массовая тормозная способность и поглощенная доза
- •4.2.6. Угловое распределение рассеянных электронов и массовая рассеивающая способность
- •Взаимодействие фотонов с веществом
- •Общее рассмотрение
- •Фотоэлектрический эффект
- •Комптоновское (некогерентное) рассеяние
- •Когерентное (релеевское) рассеяние
- •Образование электронно-позитронных пар
- •Фотоядерные реакции
- •Полные микроскопические и макроскопические сечения взаимодействия фотонов
- •Производство радионуклидов
- •5.1. Общее рассмотрение
- •Радионуклиды, наиболее широко используемые в ядерной медицине и некоторые их свойства
- •Производство р/н в реакторах
- •Производство р/н на циклотронах
- •Контрольные вопросы
- •Список литературы
- •Глава 2. Методы регистрации и детекторы ионизирующего излучения, применяемые в ядерной медицине
- •Газовые ионизационные детекторы
- •Вводные замечания
- •1.2. Основы теории работы газонаполненного ионизационного детектора
- •1.2.1. Область рекомбинации
- •1.2.2.Область ионизационного насыщения
- •1.2.3. Область пропорциональности
- •1.2.4. Плато Гейгера-Мюллера
- •1.2.5. Область непрерывного разряда
- •1.3. Ионизационные радиационные детекторы в ядерной медицине
- •Сцинтилляционные детекторы и системы регистрации
- •Общие требования к детекторам
- •Сцинтилляторы
- •Характеристики неорганических сцинтилляторов, наиболее часто применяемых в ядерной медицине и пэт
- •Фотоэлектронные умножители и электронные устройства в сцинтилляционном методе
- •Спектрометрия с кристаллом NaI(Tl)
- •Вводные замечания
- •Аппаратурная форма линии спектрометра
- •Общие характеристики сцинтилляционных детекторов с кристаллом NaI(Tl)
- •Детектирование совпадений
- •Счетчик с колодцем
- •3. Полупроводниковые детекторы
- •3.1. Общие замечания
- •3.2. Физика полупроводниковых детекторов
- •3.3. Захват носителей заряда
- •3.4. Теорема Рамо и индукция сигнала
- •3.5. Транспорт заряда и мобильность дрейфа
- •3.6. Коррекция захватов
- •Статистика регистрации ионизирующих излучений
- •4.1. Погрешность, точность и воспроизводимость
- •Распределение вероятности
- •Распространение (передача) ошибок
- •Передача погрешностей в арифметических операциях
- •Тестирование гипотез
- •Часто используемые формулы статистики отсчетов
- •Доверительный интервал
- •Значения вероятностей для критерия хи-квадрат в зависимости от числа степеней свободы [9]
- •Статистики и анализ изображения
- •Контрольные вопросы
- •Список литературы
- •Глава 3. Гамма-камера
- •Краткая история
- •Принцип работы гамма-камеры Ангера
- •Основные физические характеристики медицинских гамма-камер
- •Собственная эффективность
- •Эффективность коллиматора
- •Системная чувствительность
- •Пространственное разрешение
- •Собственное энергетическое разрешение
- •Рассеяние в пациенте и коллиматоре
- •Пространственная однородность, линейность и энергетическая чувствительность
- •Собственная пространственная однородность
- •Коррекция энергетической чувствительности
- •Нелинейность и ее коррекция
- •Автоматическая настройка фэу
- •Эффекты высокой скорости счета
- •Многокристальные и полупроводниковые гамма-камеры
- •Тесты контроля качества работы гамма-камер
- •Ежедневные тесты
- •Еженедельные тесты
- •Ежегодные тесты
- •Контрольные вопросы
- •Список литературы
- •Глава 4. Коллиматоры гамма-камеры: характеристики и проектирование
- •Параметры конструкции коллиматоров
- •Общее рассмотрение
- •Системные параметры
- •Базовые конструкционные параметры коллиматора
- •Подстроечные параметры геометрии коллиматора
- •Визуализационные свойства коллимационных систем
- •Геометрическое разрешение коллиматора
- •Чувствительность коллиматора
- •Компромисс между чувствительностью и разрешением
- •Проблема видимости схемы расположения отверстий
- •Прохождение через септу
- •Оптимизация конструкции коллиматоров с параллельными каналами
- •Некоторые нерешенные проблемы в конструктивном решении коллиматоров
- •Контрольные вопросы
- •Список литературы
- •Глава 5. Получение изображений в гамма-камерах
- •Представление в компьютере изображений, создаваемых гамма-камерами
- •Дискретизация аналоговых данных
- •Структура цифрового изображения
- •Сбор цифровых данных
- •Статическое исследование
- •Динамическое исследование
- •Ждущий режим обследования
- •Формат dicom, архивация изображений и система коммуникации
- •Физические факторы, влияющие на качество изображения
- •Пространственное разрешение
- •Комптоновское рассеяние фотонов
- •Шум изображения и контраст
- •Некоторые математические преобразования, используемые при обработке изображений
- •Анализ в частотном пространстве
- •3.2. Теория выборки
- •3.3. Свертка функций
- •3.4. Дискретные преобразования Фурье
- •3.5. Графическое изображение дискретного преобразования Фурье
- •3.6 Модель процесса визуализации
- •Фильтрация цифрового изображения
- •4.1. Линейная и нелинейная фильтрация
- •4.2. Стационарные и нестационарные фильтры
- •4.3. Низкочастотные фильтры и восстанавливающие фильтры
- •Проектирование оптимального фильтра
- •5.1. Фильтр Метца
- •5.2. Фильтр Винера
- •Контрольные вопросы
- •Список литературы
- •Глава 6. Применение планарных изображений для количественного определения активности in-vivo
- •Процесс ослабления γ-излучения
- •Метод геометрического среднего
- •Накопление рассеянного излучения
- •Контрольные вопросы
- •Список литературы
- •Глава 7. Однофотонная эмиссионная компьютерная томография (офэкт)
- •Системы однофотонной эмиссионной томографии на базе гамма-камер
- •1.1. Получение томографических данных
- •. Разрешение и чувствительность
- •. Коллиматоры
- •1.3.1. Коллиматоры с параллельными каналами
- •1.3.2. Фокусирующие коллиматоры
- •Типы орбит
- •Корректировка ослабления
- •Трансаксиальная томография
- •Реконструкция изображений
- •3.1 Простое обратное проецирование
- •3.2. Обратное проецирование с фильтрацией
- •3.2.1. Метод свертки
- •3.2.2. Метод преобразований Фурье
- •3.3. Метод итеративной реконструкции
- •Количественная офэкт
- •4.1. Количественное определение
- •4.2. Факторы, влияющие на количественную офэкт
- •4.2.1. Факторы пациента
- •4.2.2. Физические факторы
- •4.2.3. Технические факторы
- •4.3. Методы компенсации ослабления
- •4.3.1. Методы компенсации для однородного ослабления
- •4.3.2. Методы компенсации для неоднородного ослабления
- •4.4. Методы компенсации отклика детектора
- •4.5. Методы компенсации рассеяния
- •Тесты контроля качества для офэкт
- •5.1. Ежедневные тесты
- •5.2. Еженедельные тесты
- •Контрольные вопросы
- •Список литературы
- •Глава 8. Производство радионуклидов
- •1. Уравнения производства радионуклидов
- •2. Производство радионуклидов на ядерных реакторах
- •Перечень наиболее важных для ям радионуклидов, производимых на ядерных реакторах [1]
- •3. Производство радионуклидов на ускорителях
- •3.1. Циклотрон
- •Перечень наиболее важных для ям р/н, производимых на циклотронах [1]
- •3.2. Линейный ускоритель
- •4. Генераторы
- •4.1. Общая концепция
- •Перечень полезных для ям р/н, производимых на линейных ускорителях [1]
- •4.2. Математические соотношения
- •4.2.1. Вековое равновесие
- •4.2.2. Временное равновесие
- •4.2.3. Неравновесие
- •Перечень некоторых наиболее важных для ям генераторных систем [1]
- •4.3. Практическое применение
- •5. Мишени
- •5.1. Физическая и химическая форма
- •5.2. Тепловые свойства
- •5.3. Химическая стабильность, реактивность и чистота
- •5.4. Капсулирование
- •Контрольные вопросы
- •Список литературы
- •Список основных сокращений
- •Физика ядерной медицины
- •115409, Москва, Каширское шоссе, 31
Контрольные вопросы
Опишите принципы ОФЭКТ.
2. Какой тип коллиматоров и почему преимущественно используется в ОФЭКТ?
3. Какие потенциальные преимущества может принести применение коллиматоров с конусными или веерных каналами?
4. Что сильнее влияет на качество изображения: улучшение пространственного разрешения или увеличение числа отсчетов?
5. В чем недостаток круговых орбит?
Какие преимущества и недостатки имеет применение многоголовочных систем ОФЭКТ перед одноголовочной?
Как в ОФЭКТ производится корректировка ослабления излучения?
Какая угловая выборка является оптимальной в ОФЭКТ?
Какие методы реконструкции изображений получили наибольшее распространение в настоящее время?
Объясните, как реконструируется изображение методом обратного проецирования в ОФЭКТ.
В чем отличие метода фильтрованного обратного проецирования от метода простого обратного проецирования?
Почему возникают в изображении "звездообразные" артефакты?
Как производится устранение размытости изображений при их реконструкции методом обратного проецирования?
Как производится уменьшение статистических флуктуаций в изображении при их реконструкции методом обратного проецирования?
Гамма-камера имеет детектор NaI(Tl) диаметром 38 см. Данные набираются в матрицу 64 × 64. Чему равна частота Найквиста?
В чем преимущества метода преобразований Фурье перед методом свертки?
Истинно или ложно утверждение, что данные с высокой частотой представляют шум в реконструированном изображении ОФЭКТ?
Объясните основные принципы итерационного метода реконструкции изображений.
В чем отличительная особенность итерационного метода по сравнению с методом фильтрованного обратного проецирования?
Что такое количественная ОФЭКТ и какая у нее главная цель?
Какие факторы влияют на количественную ОФЭКТ?
Опишите методы компенсации, применяемые в количественной ОФЭКТ, для случая однородного ослабления?
Опишите методы компенсации, применяемые в количественной ОФЭКТ, для случая неоднородного ослабления?
Каким образом проводится в количественной ОФЭКТ компенсация отклика детектора?
Список литературы
Fahey F.H., Harkness B.A. Gamma camera SPECT systems and quality control // In: Nuclear medicine. 2nd edition. V. 1 / Ed. by R.E. Henkin, D. Bova, G.L. Dillehay et al. 2006. Mosby, Inc. P. 196 – 212.
Muehllenehner G. Effect of resolution improvement on required count density in ECT imaging: a computed simulation // Phys. Med. Biol. V. 30. 1985. P. 163 – 173.
Sensitivity, resolution and image quality with a multi-head SPECT camera. F.H. Fahey, B.A. Harkness, J.W. Keyes et al // J. Nucl. Med. V. 33. 1992. P. 1859 – 1863.
Design and clinical utility of fan beam collimator for SPECT imaging of the head. B.M.W. Tsui, G.T. Gullberg, E.R. Edgerton et al // J. Nucl. Med. V. 27. 1986. P. 810 – 819.
Jaszczak R.J., Greer K.L., Coleman R.E. SPECT using a specially designed cone beam collimator // J. Nucl. Med. V. 29. 1988. P. 1398 – 1405.
Chang L.T. A method for attenuation correction in radionuclide computed tomography // IEEE Trans. Nucl. Sci. V.25. 1978. P. 638 – 643.
Balley D.L. Transmission scanning in emission tomography // Eur. J. Nucl. Med. V. 25. 1998. P. 774 – 787.
Gopal B. Saha. Physics and radiobiology of nuclear medicine. Third edition // Springer. (Cleveland, USA). 2010.
Quantitative SPECT: basics and clinical consideration. B.M.W. Tsui, X.D. Zhao, E.C. Frey et al // Semin. Nucl. Med. V. 24. 1994. P. 38 – 65.
Tsui B.M.W. Quantitative SPECT // In: Nuclear medicine. 2nd edition. V. 1 / Ed. by R.E. Henkin, D. Bova, G.L. Dillehay et al. 2006. Mosby, Inc. P. 223 – 245.
Radionuclide emission computed tomography of the head with 99mTc and a scintillation Coleman camer. R.J. Jaszczak, P.H. Murphy, D. Huard et al // J. Nucl. Med. V. 18. 1977. P. 373 – 380.
Key D.B., Keyes J.W. First order correction for absorption and resolution compensation in radionuclide Fourier tomography // J. Nucl. Med. V. 16. 1975. P. 540 – 541.
Sorenson J.A. Quantitative measurement of radiation in vivo by whole body counting // In: Instrumentation in nuclear medicine. V.2. / Eds: Hine G.H., Sorenson J.A. New York. 1984. P. 311 – 348.
Compensation of tissue absorption in emission tomography. S. Bellini, M. Piacentini, C. Cafforio et al // IEEE Trans. Acoust. Speech Signal Processing. V. 27. 1979. P. 213 – 218.
Inouye T., Kose K., Hasegawa A. Image reconstraction algorithm for single-photon-emission computed tomography with uniform attenuation // Phys. Med. Biol. V. 34. 1989. P. 299 – 304.
Tanaka E., Toyama H., Murayama H. Convolution image reconstruction for quantitative single photon emission computed tomography // Phys. Med. Biol. V. 29. 1984. P. 1489 -- 1500.
Chang L.T. Attenuation correction in radionuclide computed tomography // IEEE Trans. Nucl. Sci. V. 25. 1978. P. 638 – 643.
Chang L.T. Attenuation correction and incomplete projection in single photon emission computed tomography // IEEE Trans. Nucl. Sci. V. 26. 1979. P. 2780 – 2789.
Shepp L.A. Vardi Y. Maximum likelihood reconstraction for emission tomography // IEEE Trans. Med. Imaging. V.1. 1982. P. 113 – 122.
Comparison between ML-EM and WLS-CG algorithm for SPECT image reconstraction. B.M.W. Tsui, X.D. Zhao, E.C. Frey et al // IEEE Trans. Nucl. Sci. V. 38. 1991. P. 1766 – 1772.
Lalus D.S., Tsui B.M.W. A generalised Gibbs prior for maximum a posteriori reconstruction in SPECT // Phys. Med. Biol. V. 38. 1993. P. 729 – 741.
Levitan E., Herman G.T. A maximum a posterior probability expectation maximization algorithm for image reconstruction in emission tomography // IEEE Trans. Med. Imaging. V. 6. 1987. P. 183 – 192.
Correction of nonuniform attenuation in cardiac SPECT imaging. B.M.W. Tsui, G.T. Gulberg, E.R. Edgerton et al // J. Nucl. Med. V. 30. 1989. P. 497 – 507.
Two-dimensional filtering of SPECT images using the Metz and Wiener filters. M.A. King, R.B., Schwinger P.W. Doherty et al // J. Nucl. Med. V. 25. 1984. P. 1234 – 1240.
King M.A., Schwinger P.W., Penney B.C. Variation of the count-dependent Metz filter with imaging system modulation transfer function // Med. Phys. V. 13. 1986. P. 139 – 149.
A theoretivcal-correct algorithm to compensate for a 3D spatially-variant point spread function in SPECT imaging. B.R. Zeeberg, A.N. Bice, S. Loncaric et al // In: Proceedings of the 1987 international conference on information processing in medical imaging. New York. 1988. Plenum Press. P. 245 – 254.
Appledorn C.R. An analytical solution to the nonstationary reconsruction problem in SPECT // Prog. Clin. Biol. Res. V. 363. 1991. P. 69 – 79.
Edholm P.R., Lewitt R.M.K., Lindholm B. Novel properties of the Fourier decomposition of the sonogram // Proc. SPIE. V. 671. 1986. P. 8 – 18.
Hawkins W.G., Leichner P.K., Yang N. The circular harmonic transform for SPECT reconstruction and boundary conditions on the Fourier transform of the sinogram // IEEE Trans. Med. Imaging. V. 7. 1988. P. 135 – 148.
Implementation of simultaneous attenuation and detector response correction in SPECT. B.M.W Tsui, H.B. Hu, D.R. Gilland et al // IEEE Trans. Nucl. Sci. V. 35. 1988. P. 778 – 783.
Formiconi A.R., Pupi A., Passeri A. Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique // Phys. Med. Biol. V. 34. 1990. P. 69 – 84.
Zeng G.L., Guilberg G.T. Frequency domain implementation of three- dimensional geometric point response function correction in SPECT imaging // IEEE Trans. Nucl. Sci. V. 39. 1992. P. 1444 – 1453.
The importance and implementation of accurate three-dimensional compensation methods for quantitative SPECT. B.M.W Tsui, E.C. Frey, X.D. Zhao et al // Phys. Med. Biol. V. 39. 1993. P. 509 – 530.
Jaszczak R.J., Floyd C.E., Coleman R.E. Scatter compensation technique for SPECT // IEEE Trans. Nucl. Sci. V. 32. 1985. P. 786 – 793.
King M.A., Hademenjs G., Glick S.J. A dual-photopeak window method for scatter correction // J. Nucl. Med. V. 33. 1992. P. 605 – 612.
Floyd C.E., Jaszczak R.J., Coleman R.E. Inverse Monte Carlo: A unified reconstruction algorithm for SPECT // IEEE Trans. Nucl. Sci. V. 32. 1985. P. 779 – 985.
Frey E.C., Tsui B.M.W. A practical method for incorporating scatter in a projector-backprojecror for accurate scatter compensation in SPECT // IEEE Trans. Nucl. Sci. V. 40. 1993. P. 1107 – 1116.
Todd-Pokrotek A. The mathematics and physics of emission computerized tomography (ECT) // In: Emission Computed Tomography / Ed.:Esser P.D., Westerman B.R. New York: Society of Nuclear Medicine. 1983.