
- •Физика ядерной медицины
- •Предисловие
- •Введение
- •Список литературы
- •Оглавление
- •Соотношение между единицами измерения физических величин
- •Классификация излучений
- •Строение атома и ядра
- •2.1. Основные определения атомной структуры
- •Модель атома Резерфорда
- •Модель атома водорода Бора
- •Многоэлектронные атомы
- •Строение ядра
- •Ядерные реакции
- •Радиоактивность
- •Виды радиоактивного распада
- •Генераторные системы
- •Характеристики поля излучения
- •3.1. Флюенс и плотность потока
- •Керма и поглощенная доза
- •Взаимодействие излучений с веществом
- •4.1. Сечения взаимодействия
- •Взаимодействие заряженных частиц с веществом
- •4.2.1. Общее описание взаимодействия
- •4.2.2. Взаимодействие с орбитальными электронами
- •4.2.3. Взаимодействие с ядрами атомов
- •4.2.4. Тормозная способность
- •4.2.5. Ограниченная массовая тормозная способность и поглощенная доза
- •4.2.6. Угловое распределение рассеянных электронов и массовая рассеивающая способность
- •Взаимодействие фотонов с веществом
- •Общее рассмотрение
- •Фотоэлектрический эффект
- •Комптоновское (некогерентное) рассеяние
- •Когерентное (релеевское) рассеяние
- •Образование электронно-позитронных пар
- •Фотоядерные реакции
- •Полные микроскопические и макроскопические сечения взаимодействия фотонов
- •Производство радионуклидов
- •5.1. Общее рассмотрение
- •Радионуклиды, наиболее широко используемые в ядерной медицине и некоторые их свойства
- •Производство р/н в реакторах
- •Производство р/н на циклотронах
- •Контрольные вопросы
- •Список литературы
- •Глава 2. Методы регистрации и детекторы ионизирующего излучения, применяемые в ядерной медицине
- •Газовые ионизационные детекторы
- •Вводные замечания
- •1.2. Основы теории работы газонаполненного ионизационного детектора
- •1.2.1. Область рекомбинации
- •1.2.2.Область ионизационного насыщения
- •1.2.3. Область пропорциональности
- •1.2.4. Плато Гейгера-Мюллера
- •1.2.5. Область непрерывного разряда
- •1.3. Ионизационные радиационные детекторы в ядерной медицине
- •Сцинтилляционные детекторы и системы регистрации
- •Общие требования к детекторам
- •Сцинтилляторы
- •Характеристики неорганических сцинтилляторов, наиболее часто применяемых в ядерной медицине и пэт
- •Фотоэлектронные умножители и электронные устройства в сцинтилляционном методе
- •Спектрометрия с кристаллом NaI(Tl)
- •Вводные замечания
- •Аппаратурная форма линии спектрометра
- •Общие характеристики сцинтилляционных детекторов с кристаллом NaI(Tl)
- •Детектирование совпадений
- •Счетчик с колодцем
- •3. Полупроводниковые детекторы
- •3.1. Общие замечания
- •3.2. Физика полупроводниковых детекторов
- •3.3. Захват носителей заряда
- •3.4. Теорема Рамо и индукция сигнала
- •3.5. Транспорт заряда и мобильность дрейфа
- •3.6. Коррекция захватов
- •Статистика регистрации ионизирующих излучений
- •4.1. Погрешность, точность и воспроизводимость
- •Распределение вероятности
- •Распространение (передача) ошибок
- •Передача погрешностей в арифметических операциях
- •Тестирование гипотез
- •Часто используемые формулы статистики отсчетов
- •Доверительный интервал
- •Значения вероятностей для критерия хи-квадрат в зависимости от числа степеней свободы [9]
- •Статистики и анализ изображения
- •Контрольные вопросы
- •Список литературы
- •Глава 3. Гамма-камера
- •Краткая история
- •Принцип работы гамма-камеры Ангера
- •Основные физические характеристики медицинских гамма-камер
- •Собственная эффективность
- •Эффективность коллиматора
- •Системная чувствительность
- •Пространственное разрешение
- •Собственное энергетическое разрешение
- •Рассеяние в пациенте и коллиматоре
- •Пространственная однородность, линейность и энергетическая чувствительность
- •Собственная пространственная однородность
- •Коррекция энергетической чувствительности
- •Нелинейность и ее коррекция
- •Автоматическая настройка фэу
- •Эффекты высокой скорости счета
- •Многокристальные и полупроводниковые гамма-камеры
- •Тесты контроля качества работы гамма-камер
- •Ежедневные тесты
- •Еженедельные тесты
- •Ежегодные тесты
- •Контрольные вопросы
- •Список литературы
- •Глава 4. Коллиматоры гамма-камеры: характеристики и проектирование
- •Параметры конструкции коллиматоров
- •Общее рассмотрение
- •Системные параметры
- •Базовые конструкционные параметры коллиматора
- •Подстроечные параметры геометрии коллиматора
- •Визуализационные свойства коллимационных систем
- •Геометрическое разрешение коллиматора
- •Чувствительность коллиматора
- •Компромисс между чувствительностью и разрешением
- •Проблема видимости схемы расположения отверстий
- •Прохождение через септу
- •Оптимизация конструкции коллиматоров с параллельными каналами
- •Некоторые нерешенные проблемы в конструктивном решении коллиматоров
- •Контрольные вопросы
- •Список литературы
- •Глава 5. Получение изображений в гамма-камерах
- •Представление в компьютере изображений, создаваемых гамма-камерами
- •Дискретизация аналоговых данных
- •Структура цифрового изображения
- •Сбор цифровых данных
- •Статическое исследование
- •Динамическое исследование
- •Ждущий режим обследования
- •Формат dicom, архивация изображений и система коммуникации
- •Физические факторы, влияющие на качество изображения
- •Пространственное разрешение
- •Комптоновское рассеяние фотонов
- •Шум изображения и контраст
- •Некоторые математические преобразования, используемые при обработке изображений
- •Анализ в частотном пространстве
- •3.2. Теория выборки
- •3.3. Свертка функций
- •3.4. Дискретные преобразования Фурье
- •3.5. Графическое изображение дискретного преобразования Фурье
- •3.6 Модель процесса визуализации
- •Фильтрация цифрового изображения
- •4.1. Линейная и нелинейная фильтрация
- •4.2. Стационарные и нестационарные фильтры
- •4.3. Низкочастотные фильтры и восстанавливающие фильтры
- •Проектирование оптимального фильтра
- •5.1. Фильтр Метца
- •5.2. Фильтр Винера
- •Контрольные вопросы
- •Список литературы
- •Глава 6. Применение планарных изображений для количественного определения активности in-vivo
- •Процесс ослабления γ-излучения
- •Метод геометрического среднего
- •Накопление рассеянного излучения
- •Контрольные вопросы
- •Список литературы
- •Глава 7. Однофотонная эмиссионная компьютерная томография (офэкт)
- •Системы однофотонной эмиссионной томографии на базе гамма-камер
- •1.1. Получение томографических данных
- •. Разрешение и чувствительность
- •. Коллиматоры
- •1.3.1. Коллиматоры с параллельными каналами
- •1.3.2. Фокусирующие коллиматоры
- •Типы орбит
- •Корректировка ослабления
- •Трансаксиальная томография
- •Реконструкция изображений
- •3.1 Простое обратное проецирование
- •3.2. Обратное проецирование с фильтрацией
- •3.2.1. Метод свертки
- •3.2.2. Метод преобразований Фурье
- •3.3. Метод итеративной реконструкции
- •Количественная офэкт
- •4.1. Количественное определение
- •4.2. Факторы, влияющие на количественную офэкт
- •4.2.1. Факторы пациента
- •4.2.2. Физические факторы
- •4.2.3. Технические факторы
- •4.3. Методы компенсации ослабления
- •4.3.1. Методы компенсации для однородного ослабления
- •4.3.2. Методы компенсации для неоднородного ослабления
- •4.4. Методы компенсации отклика детектора
- •4.5. Методы компенсации рассеяния
- •Тесты контроля качества для офэкт
- •5.1. Ежедневные тесты
- •5.2. Еженедельные тесты
- •Контрольные вопросы
- •Список литературы
- •Глава 8. Производство радионуклидов
- •1. Уравнения производства радионуклидов
- •2. Производство радионуклидов на ядерных реакторах
- •Перечень наиболее важных для ям радионуклидов, производимых на ядерных реакторах [1]
- •3. Производство радионуклидов на ускорителях
- •3.1. Циклотрон
- •Перечень наиболее важных для ям р/н, производимых на циклотронах [1]
- •3.2. Линейный ускоритель
- •4. Генераторы
- •4.1. Общая концепция
- •Перечень полезных для ям р/н, производимых на линейных ускорителях [1]
- •4.2. Математические соотношения
- •4.2.1. Вековое равновесие
- •4.2.2. Временное равновесие
- •4.2.3. Неравновесие
- •Перечень некоторых наиболее важных для ям генераторных систем [1]
- •4.3. Практическое применение
- •5. Мишени
- •5.1. Физическая и химическая форма
- •5.2. Тепловые свойства
- •5.3. Химическая стабильность, реактивность и чистота
- •5.4. Капсулирование
- •Контрольные вопросы
- •Список литературы
- •Список основных сокращений
- •Физика ядерной медицины
- •115409, Москва, Каширское шоссе, 31
Некоторые нерешенные проблемы в конструктивном решении коллиматоров
Несмотря на многие годы исследований до настоящего времени не создана удовлетворительная конструкция коллиматора для детектирования 511-кэВ фотонов. Главная проблема при конструировании коллиматоров для высоких энергий заключается в прохождении излучения через материал коллиматора. Решение этой проблемы через увеличение толщины коллиматора и диаметра каналов создает только новые проблемы. В изображении появляются артефакты, связанные с видимостью структуры отверстий. Гантри большинства камер не могут поддерживать вес таких тяжелых коллиматоров.
Проблема видимости сетки отверстий, однако, является решаемой. Одно из возможных решений состоит в применении качания или вращения коллиматора, но оно требует дополнительного оборудования. Другое решение – создание нового плотного сплава или смеси веществ с высоким атомным номером. Повышение плотности позволило бы укоротить длину и сократить поперечные размеры отверстий, что в результате уменьшило бы количество артефактов. Альтернативный подход состоит в применении в конструкции коллиматоров вольфрамовых стержней и ванадиевых гильз, которые вводятся в свинцовый расплав. Такое решение не может полностью решить проблему, так как оценки показывают, что даже чисто вольфрамовые коллиматоры не могут полностью устранить артефакты, связанные со структурой отверстий. Однако применение урана в сочетании со свинцовым покрытием при конструировании коллиматоров могло бы уменьшить эффект видимости решетки отверстий до приемлемого на практике уровня. Наконец, этот эффект возможно минимизировать с помощью усовершенствований в геометрии коллиматора. Одна из нереализованных идей состоит в сужении поперечных сечений коллиматоров вблизи фронтальной и задней поверхностей коллиматора и оптимальной подстройки расстояния В между коллиматором и плоскостью изображения.
Следующей нерешенной проблемой является оптимизация КПК для анализа распределений р/н с полиэнергетическим спектром. Существующие методики оптимизации применяют критерий прохождения излучения через септу, который основан на использовании линейного коэффициента ослабления фотонов для конкретной энергии. Однако многие р/н, например 67Ga, испускают фотоны с различными энергиями, и оптимизация параметров коллиматора для одной энергии не обязательно будет подходящей для фотонов с другой энергией. Оптимизация конструкции для наивысшей энергии тоже может оказаться неверным решением в случаях, когда выход фотонов с этой высокой энергией является малым. Но и игнорировать такую фракцию спектра будет неразумным, потому что эти высокоэнергетические фотоны могут "разлиться" по всему изображению, уменьшить контраст и создать больше отсчетов, чем низкоэнергетическая фракция спектра. Сложность данной проблемы не позволяет, таким образом, при проектировании коллиматоров полагаться на простые критерии, рассмотренные выше. В этом случае целесообразно для оптимизации конструкции провести всестороннее исследование с применением компьютерных программ лучевого анализа.
Остается нерешенной проблема оптимального конструирования конвергентных коллиматоров. Проектирование конусных и веерных коллиматоров является намного более сложной задачей, чем проектирование КПК. Разработка адекватного согласованного метода для определения расположения каналов и других геометрических параметров этих коллиматоров стала бы важным достижением в данной области.
И последнее, мало изученными являются вопросы проектирования коллиматоров для недавно разработанных многокристальных гамма-камер. Некоторые ученые утверждают, что более оптимальными для таких гамма-камер будут коллиматоры с каналами квадратного поперечного сечения [6, 7].