
- •Физика ядерной медицины
- •Предисловие
- •Введение
- •Список литературы
- •Оглавление
- •Соотношение между единицами измерения физических величин
- •Классификация излучений
- •Строение атома и ядра
- •2.1. Основные определения атомной структуры
- •Модель атома Резерфорда
- •Модель атома водорода Бора
- •Многоэлектронные атомы
- •Строение ядра
- •Ядерные реакции
- •Радиоактивность
- •Виды радиоактивного распада
- •Генераторные системы
- •Характеристики поля излучения
- •3.1. Флюенс и плотность потока
- •Керма и поглощенная доза
- •Взаимодействие излучений с веществом
- •4.1. Сечения взаимодействия
- •Взаимодействие заряженных частиц с веществом
- •4.2.1. Общее описание взаимодействия
- •4.2.2. Взаимодействие с орбитальными электронами
- •4.2.3. Взаимодействие с ядрами атомов
- •4.2.4. Тормозная способность
- •4.2.5. Ограниченная массовая тормозная способность и поглощенная доза
- •4.2.6. Угловое распределение рассеянных электронов и массовая рассеивающая способность
- •Взаимодействие фотонов с веществом
- •Общее рассмотрение
- •Фотоэлектрический эффект
- •Комптоновское (некогерентное) рассеяние
- •Когерентное (релеевское) рассеяние
- •Образование электронно-позитронных пар
- •Фотоядерные реакции
- •Полные микроскопические и макроскопические сечения взаимодействия фотонов
- •Производство радионуклидов
- •5.1. Общее рассмотрение
- •Радионуклиды, наиболее широко используемые в ядерной медицине и некоторые их свойства
- •Производство р/н в реакторах
- •Производство р/н на циклотронах
- •Контрольные вопросы
- •Список литературы
- •Глава 2. Методы регистрации и детекторы ионизирующего излучения, применяемые в ядерной медицине
- •Газовые ионизационные детекторы
- •Вводные замечания
- •1.2. Основы теории работы газонаполненного ионизационного детектора
- •1.2.1. Область рекомбинации
- •1.2.2.Область ионизационного насыщения
- •1.2.3. Область пропорциональности
- •1.2.4. Плато Гейгера-Мюллера
- •1.2.5. Область непрерывного разряда
- •1.3. Ионизационные радиационные детекторы в ядерной медицине
- •Сцинтилляционные детекторы и системы регистрации
- •Общие требования к детекторам
- •Сцинтилляторы
- •Характеристики неорганических сцинтилляторов, наиболее часто применяемых в ядерной медицине и пэт
- •Фотоэлектронные умножители и электронные устройства в сцинтилляционном методе
- •Спектрометрия с кристаллом NaI(Tl)
- •Вводные замечания
- •Аппаратурная форма линии спектрометра
- •Общие характеристики сцинтилляционных детекторов с кристаллом NaI(Tl)
- •Детектирование совпадений
- •Счетчик с колодцем
- •3. Полупроводниковые детекторы
- •3.1. Общие замечания
- •3.2. Физика полупроводниковых детекторов
- •3.3. Захват носителей заряда
- •3.4. Теорема Рамо и индукция сигнала
- •3.5. Транспорт заряда и мобильность дрейфа
- •3.6. Коррекция захватов
- •Статистика регистрации ионизирующих излучений
- •4.1. Погрешность, точность и воспроизводимость
- •Распределение вероятности
- •Распространение (передача) ошибок
- •Передача погрешностей в арифметических операциях
- •Тестирование гипотез
- •Часто используемые формулы статистики отсчетов
- •Доверительный интервал
- •Значения вероятностей для критерия хи-квадрат в зависимости от числа степеней свободы [9]
- •Статистики и анализ изображения
- •Контрольные вопросы
- •Список литературы
- •Глава 3. Гамма-камера
- •Краткая история
- •Принцип работы гамма-камеры Ангера
- •Основные физические характеристики медицинских гамма-камер
- •Собственная эффективность
- •Эффективность коллиматора
- •Системная чувствительность
- •Пространственное разрешение
- •Собственное энергетическое разрешение
- •Рассеяние в пациенте и коллиматоре
- •Пространственная однородность, линейность и энергетическая чувствительность
- •Собственная пространственная однородность
- •Коррекция энергетической чувствительности
- •Нелинейность и ее коррекция
- •Автоматическая настройка фэу
- •Эффекты высокой скорости счета
- •Многокристальные и полупроводниковые гамма-камеры
- •Тесты контроля качества работы гамма-камер
- •Ежедневные тесты
- •Еженедельные тесты
- •Ежегодные тесты
- •Контрольные вопросы
- •Список литературы
- •Глава 4. Коллиматоры гамма-камеры: характеристики и проектирование
- •Параметры конструкции коллиматоров
- •Общее рассмотрение
- •Системные параметры
- •Базовые конструкционные параметры коллиматора
- •Подстроечные параметры геометрии коллиматора
- •Визуализационные свойства коллимационных систем
- •Геометрическое разрешение коллиматора
- •Чувствительность коллиматора
- •Компромисс между чувствительностью и разрешением
- •Проблема видимости схемы расположения отверстий
- •Прохождение через септу
- •Оптимизация конструкции коллиматоров с параллельными каналами
- •Некоторые нерешенные проблемы в конструктивном решении коллиматоров
- •Контрольные вопросы
- •Список литературы
- •Глава 5. Получение изображений в гамма-камерах
- •Представление в компьютере изображений, создаваемых гамма-камерами
- •Дискретизация аналоговых данных
- •Структура цифрового изображения
- •Сбор цифровых данных
- •Статическое исследование
- •Динамическое исследование
- •Ждущий режим обследования
- •Формат dicom, архивация изображений и система коммуникации
- •Физические факторы, влияющие на качество изображения
- •Пространственное разрешение
- •Комптоновское рассеяние фотонов
- •Шум изображения и контраст
- •Некоторые математические преобразования, используемые при обработке изображений
- •Анализ в частотном пространстве
- •3.2. Теория выборки
- •3.3. Свертка функций
- •3.4. Дискретные преобразования Фурье
- •3.5. Графическое изображение дискретного преобразования Фурье
- •3.6 Модель процесса визуализации
- •Фильтрация цифрового изображения
- •4.1. Линейная и нелинейная фильтрация
- •4.2. Стационарные и нестационарные фильтры
- •4.3. Низкочастотные фильтры и восстанавливающие фильтры
- •Проектирование оптимального фильтра
- •5.1. Фильтр Метца
- •5.2. Фильтр Винера
- •Контрольные вопросы
- •Список литературы
- •Глава 6. Применение планарных изображений для количественного определения активности in-vivo
- •Процесс ослабления γ-излучения
- •Метод геометрического среднего
- •Накопление рассеянного излучения
- •Контрольные вопросы
- •Список литературы
- •Глава 7. Однофотонная эмиссионная компьютерная томография (офэкт)
- •Системы однофотонной эмиссионной томографии на базе гамма-камер
- •1.1. Получение томографических данных
- •. Разрешение и чувствительность
- •. Коллиматоры
- •1.3.1. Коллиматоры с параллельными каналами
- •1.3.2. Фокусирующие коллиматоры
- •Типы орбит
- •Корректировка ослабления
- •Трансаксиальная томография
- •Реконструкция изображений
- •3.1 Простое обратное проецирование
- •3.2. Обратное проецирование с фильтрацией
- •3.2.1. Метод свертки
- •3.2.2. Метод преобразований Фурье
- •3.3. Метод итеративной реконструкции
- •Количественная офэкт
- •4.1. Количественное определение
- •4.2. Факторы, влияющие на количественную офэкт
- •4.2.1. Факторы пациента
- •4.2.2. Физические факторы
- •4.2.3. Технические факторы
- •4.3. Методы компенсации ослабления
- •4.3.1. Методы компенсации для однородного ослабления
- •4.3.2. Методы компенсации для неоднородного ослабления
- •4.4. Методы компенсации отклика детектора
- •4.5. Методы компенсации рассеяния
- •Тесты контроля качества для офэкт
- •5.1. Ежедневные тесты
- •5.2. Еженедельные тесты
- •Контрольные вопросы
- •Список литературы
- •Глава 8. Производство радионуклидов
- •1. Уравнения производства радионуклидов
- •2. Производство радионуклидов на ядерных реакторах
- •Перечень наиболее важных для ям радионуклидов, производимых на ядерных реакторах [1]
- •3. Производство радионуклидов на ускорителях
- •3.1. Циклотрон
- •Перечень наиболее важных для ям р/н, производимых на циклотронах [1]
- •3.2. Линейный ускоритель
- •4. Генераторы
- •4.1. Общая концепция
- •Перечень полезных для ям р/н, производимых на линейных ускорителях [1]
- •4.2. Математические соотношения
- •4.2.1. Вековое равновесие
- •4.2.2. Временное равновесие
- •4.2.3. Неравновесие
- •Перечень некоторых наиболее важных для ям генераторных систем [1]
- •4.3. Практическое применение
- •5. Мишени
- •5.1. Физическая и химическая форма
- •5.2. Тепловые свойства
- •5.3. Химическая стабильность, реактивность и чистота
- •5.4. Капсулирование
- •Контрольные вопросы
- •Список литературы
- •Список основных сокращений
- •Физика ядерной медицины
- •115409, Москва, Каширское шоссе, 31
Производство радионуклидов
5.1. Общее рассмотрение
Большая часть р/н, используемых в ЯМ производится либо на ядерных реакторах, либо на циклотронах. В табл. 1.2 приводится список наиболее употребительных в настоящее время р/н и некоторые их свойства.
Таблица 1.2
Радионуклиды, наиболее широко используемые в ядерной медицине и некоторые их свойства
Радионуклиды |
Период полураспада |
Вид распада |
Энергия фотонов, кэВ |
Визуализация с использованием гамма-камер | |||
99mTc |
6,0 ч |
М |
140 |
131I |
8, 0 дней |
β- |
365 |
123I |
13 ч |
ЭЗ |
160 |
133Xe |
5,2 дня |
β- |
81 |
201Tl |
3,0 дня |
ЭЗ |
69-81 (90 %), 167 (10 %) |
67Ga |
3,3 дня |
ЭЗ |
93 (50 %), 185 (30 %),300 (20 %) |
111In |
2,8 дня |
ЭЗ |
173 (50 %), 247 (50 %) |
81mKr |
13 с |
М |
190 |
Исследования in vitro | |||
51Cr |
28 дней |
ЭЗ |
320 |
125I |
60 дней |
ЭЗ |
27-31 (95 %), 35 (5 %) |
3H |
12 лет |
β- |
Нет |
14C |
5730 лет |
β- |
Нет |
57Co |
270 дней |
ЭЗ |
122 (86 %), 136 (24 %) |
58Co |
71 день |
ЭЗ, β+ |
811 (76 %), 511 (24 %) |
Визуализация с использованием ПЭТ | |||
11C |
20 мин |
β+ |
511 |
13N |
10 мин |
β+ |
511 |
15O |
2 мин |
β+ |
511 |
18F |
110 мин |
β+ |
511 |
82Rb |
1,3 мин |
β+ |
511 |
68Ga |
1,1 ч |
β+ |
511 |
Производство р/н в реакторах
Для производства р/н в ядерных реакторах применяются две технологии: а) реакция активации стабильных изотопов в потоке нейтронов; б) извлечение р/н из продуктов деления урана, накапливающихся в тепловыделяющих элементах. Рассмотрим их поочередно.
Внутри активной зоны ядерного реактора, как известно, существуют очень интенсивные потоки нейтронов, возникающие в результате деления ядер урана. Если в такой поток поместить некоторое количество стабильного изотопа (мишень), то под действием бомбардирования нейтронами ядра изотопа будут подвергаться ядерным превращениям, становясь радиоактивными.
Так как нейтроны не имеют заряда, они могут приблизиться к ядру на расстояние действия ядерных сил и в результате ядерной реакции образовать новое составное ядро, имеющее дополнительный нейтрон. Этот процесс называется активацией. Схематически этот процесс обозначается следующим образом
(1.84)
Образовавшееся в результате
активации дочернее ядро D
имеет излишек нейтронов по сравнению
с ядром стабильного изотопа, поэтому
обычно оно распадается с испусканием
-частицы.
В простейшем случае для
получения гипотетического р/н
используется
как мишень ядро
В
результате бомбардировки потоком
нейтронов оно захватывает нейтрон,
новое ядро оказывается в возбужденном
состоянии, которое снимается путем
испускания γ-излучения.
Таким образом,
(1.85)
Активность получаемого дочернего изотопа будет равна
(1.86)
где t – время облучения мишени; Np(0) – число ядер материнского изотопа в начальный период времени; Φ – флюенс нейтронов.
Максимальная активность дочернего р/н достигается после облучения в течение времени tmax, равному
(1.87)
При облучении мишени в течении периода полураспада активность дочернего р/н достигнет половины от максимальной Если σΦ << λD, то уравнение (1.86) переходит в простую зависимость экспоненциального роста активности дочернего р/н
(1.88)
Одной из серьезных проблем при реакторном производстве радионуклидов заключается в том, что вещество мишени и образующегося р/н представляют один и тот же химический элемент. Поэтому их нельзя разделить химическим путем и, следовательно, требуемый радионуклид получается в смеси с дочерним изотопом или, как принято говорить, с "носителем". При мечении фармпрепарата такой смесью присутствие носителя уменьшает отношение активности к полной массе элемента в радиофармпрепарате. Это отношение называют специфической активностью продукта и его по возможности следует увеличивать.
По второй технологии некоторые р/н получают из продуктов деления урана, образующихся тепловыделяющих элементах (твелов) при работе реактора. К таким р/н относятся 99Mo, 131I, 133Xe и др. Эти нуклиды выделяют химическим путем из твэлов, когда они извлекаются из реактора для замены свежими. Радионуклиды, извлекаемые из твэлов, как правило, имеют более высокую специфическую активность, чем получаемые с помощью бомбардировки нейтронами.