Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Чопоров_Основы информатики

.pdf
Скачиваний:
49
Добавлен:
26.03.2016
Размер:
3.56 Mб
Скачать

высокие, особенно когда центральный узел географически расположен не в центре топологии.

Рис. 5.15. Топология в виде звезды

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи; к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления – сервер – может реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кольцевая топология

231

При кольцевой топологии сети (рис. 5.16) рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т. д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рис. 5.16. Кольцевая топология

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно

232

участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует краткосрочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Шинная топология

При шинной топологии (рис. 5.17) среда передачи информации представляется в форме коммуникационного пути, доступного для всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Рис. 5.17. Шинная топология

Рабочие станции в любое время, без прерывания работы всей вычислительной сети могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кабель (от англ. Cheap – дешевый) с тройниковым соединителем (или Т- соединением). Выключение и особенно подключение к такой

233

сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.

Смешанная структура ЛВС

Наряду с известными топологиями вычислительных сетей – кольцо, звезда и шина, на практике применяется и комбинированная, например, гибридная структура (рис. 5.18). Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Вычислительные сети с гибридной структурой применяются там, где нерационально (или невозможно) непосредственное применение базовых сетевых структур в чистом виде.

Рис. 5.18. Гибридная топология

Ячеистая (mesh) топология сети (рис. 5.19) напоминает структуру соединения узлов в Internet, т. е. между узлами существует два и более маршрутов прохождения пакетов.

234

Рис. 5.19. Ячеистая топология

Сетевые устройства и средства коммуникаций

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель, оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели:

стоимость монтажа и обслуживания;

скорость передачи информации;

ограничения на величину расстояния передачи информации без дополнительных усилителей-повторителей

(репитеров/repeater);

безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость.

Виды используемых кабелей и сетевого оборудования

Оптоволоконные линии. Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем (рис. 5.20). Скорость распространения информации по ним

235

достигает десятков гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует. На данный момент это наиболее дорогостоящее соединение для ЛВС. Применяются они там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в ЛВС с помощью звездообразного соединения.

Защитный слой (бронирование)

Изолирующая Медная оболочка

Токовед фольга

Стальная ущие Оптические защитная жилы

волокна трубка

а)

б)

Рис. 5.20. а) оптоволоконный кабель для внешней прокладки; б) SC- и FC-коннекторы

236

Витая пара. Наиболее дешевым и самым популярным в настоящее время кабельным соединением является витое двухжильное проводное соединение часто называемое «витой парой» (twisted pair или unshielded twisted pair/UTP). Она позволяет передавать информацию со скоростью до 1000 Мбит/с, легко наращивается, однако не защищена от помех. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с (ограничение для ЛВС обычно составляет 100 м). Преимуществами являются низкая цена и простота установки. Для повышения помехозащищенности информации часто используют экранированную витую пару (shielded twisted pair/STP), т. е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля (рис. 5.21).

Рис. 5.21. Типы электрического кабеля

Ethernet-кабель. Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (thick), желтый кабель (yellow cable) или 10Base-T5. Он использует 15-контактное стандартное включение. Вследствие помехозащищенности он

237

является дорогой альтернативой обычным коаксиальным кабелям. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet – около 3000 м. Ethernet-кабель благодаря своей магистральной топологии использует в конце лишь один нагрузочный резистор.

Cheapernet-кабель. Более дешевым, чем Ethernetкабель, является соединение Cheapernet-кабель или, как его часто называют, тонкий (thin) Ethernet, или 10Base-T2. Это также 50-омный коаксиальный кабель со скоростью передачи информации 10 Мбит/с (рис. 5.21).

При соединении сегментов Cheapernet-кабеля также требуются повторители. Вычислительные сети с Cheapernetкабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединения сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР-50). Дополнительное экранирование не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (T-connectors).

Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м (для ЛВС ограничение составляет 185 м), а общее расстояние для сети на Cheapernet-кабеля – около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала.

Сетевая карта (рис. 5.22). Платы сетевого адаптера выступают в качестве физического интерфейса, или соединения между компьютером и сетевым кабелем. Платы вставляются в специальные гнезда (слоты расширения) всех компьютеров и серверов. Чтобы обеспечить физическое соединение между компьютером и сетью, к соответствующему разъему, или порту, платы (после ее установки) подключают сетевой кабель.

238

Рис. 5.22. Плата сетевого адаптера а) – проводной б) беспроводной

Назначение платы сетевого адаптера:

подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю;

передача данных другому компьютеру;

управление потоком данных между компьютером и кабельной системой;

плата сетевого адаптера принимает данные из сетевого кабеля и переводит в форму, понятную центральному

239

процессору компьютера.

Плата сетевого адаптера состоит из аппаратной части и встроенных программ, записанных в ПЗУ (постоянном запоминающем устройстве). Эти программы реализуют функции подуровней управления логической связью и управление доступом к среде канального уровня модели OSI. В современных материнских платах сетевой адаптер встроенный.

Разветвитель (концентратор, хаб, НАВ). Он служит классическим центральным узлом в сетях с топологией «звезда». В настоящее время хабы полностью вытеснены коммутаторами.

Сетевой коммутатор (свитч от switch

переключатель) – устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети (рис. 5.23).

Рис. 5.23. Сетевые коммутаторы

В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным (что является абсолютно небезопасным с точки зрения защиты информации), коммутатор передаёт данные

240