- •Contents at a Glance
- •Table of Contents
- •Acknowledgments
- •Introduction
- •Who This Book Is For
- •Finding Your Best Starting Point in This Book
- •Conventions and Features in This Book
- •Conventions
- •Other Features
- •System Requirements
- •Code Samples
- •Installing the Code Samples
- •Using the Code Samples
- •Support for This Book
- •Questions and Comments
- •Beginning Programming with the Visual Studio 2008 Environment
- •Writing Your First Program
- •Using Namespaces
- •Creating a Graphical Application
- •Chapter 1 Quick Reference
- •Understanding Statements
- •Identifying Keywords
- •Using Variables
- •Naming Variables
- •Declaring Variables
- •Working with Primitive Data Types
- •Displaying Primitive Data Type Values
- •Using Arithmetic Operators
- •Operators and Types
- •Examining Arithmetic Operators
- •Controlling Precedence
- •Using Associativity to Evaluate Expressions
- •Associativity and the Assignment Operator
- •Incrementing and Decrementing Variables
- •Declaring Implicitly Typed Local Variables
- •Chapter 2 Quick Reference
- •Declaring Methods
- •Specifying the Method Declaration Syntax
- •Writing return Statements
- •Calling Methods
- •Specifying the Method Call Syntax
- •Applying Scope
- •Overloading Methods
- •Writing Methods
- •Chapter 3 Quick Reference
- •Declaring Boolean Variables
- •Using Boolean Operators
- •Understanding Equality and Relational Operators
- •Understanding Conditional Logical Operators
- •Summarizing Operator Precedence and Associativity
- •Using if Statements to Make Decisions
- •Understanding if Statement Syntax
- •Using Blocks to Group Statements
- •Cascading if Statements
- •Using switch Statements
- •Understanding switch Statement Syntax
- •Following the switch Statement Rules
- •Chapter 4 Quick Reference
- •Using Compound Assignment Operators
- •Writing while Statements
- •Writing for Statements
- •Understanding for Statement Scope
- •Writing do Statements
- •Chapter 5 Quick Reference
- •Coping with Errors
- •Trying Code and Catching Exceptions
- •Handling an Exception
- •Using Multiple catch Handlers
- •Catching Multiple Exceptions
- •Using Checked and Unchecked Integer Arithmetic
- •Writing Checked Statements
- •Writing Checked Expressions
- •Throwing Exceptions
- •Chapter 6 Quick Reference
- •The Purpose of Encapsulation
- •Controlling Accessibility
- •Working with Constructors
- •Overloading Constructors
- •Understanding static Methods and Data
- •Creating a Shared Field
- •Creating a static Field by Using the const Keyword
- •Chapter 7 Quick Reference
- •Copying Value Type Variables and Classes
- •Understanding Null Values and Nullable Types
- •Using Nullable Types
- •Understanding the Properties of Nullable Types
- •Using ref and out Parameters
- •Creating ref Parameters
- •Creating out Parameters
- •How Computer Memory Is Organized
- •Using the Stack and the Heap
- •The System.Object Class
- •Boxing
- •Unboxing
- •Casting Data Safely
- •The is Operator
- •The as Operator
- •Chapter 8 Quick Reference
- •Working with Enumerations
- •Declaring an Enumeration
- •Using an Enumeration
- •Choosing Enumeration Literal Values
- •Choosing an Enumeration’s Underlying Type
- •Working with Structures
- •Declaring a Structure
- •Understanding Structure and Class Differences
- •Declaring Structure Variables
- •Understanding Structure Initialization
- •Copying Structure Variables
- •Chapter 9 Quick Reference
- •What Is an Array?
- •Declaring Array Variables
- •Creating an Array Instance
- •Initializing Array Variables
- •Creating an Implicitly Typed Array
- •Accessing an Individual Array Element
- •Iterating Through an Array
- •Copying Arrays
- •What Are Collection Classes?
- •The ArrayList Collection Class
- •The Queue Collection Class
- •The Stack Collection Class
- •The Hashtable Collection Class
- •The SortedList Collection Class
- •Using Collection Initializers
- •Comparing Arrays and Collections
- •Using Collection Classes to Play Cards
- •Chapter 10 Quick Reference
- •Using Array Arguments
- •Declaring a params Array
- •Using params object[ ]
- •Using a params Array
- •Chapter 11 Quick Reference
- •What Is Inheritance?
- •Using Inheritance
- •Base Classes and Derived Classes
- •Calling Base Class Constructors
- •Assigning Classes
- •Declaring new Methods
- •Declaring Virtual Methods
- •Declaring override Methods
- •Understanding protected Access
- •Understanding Extension Methods
- •Chapter 12 Quick Reference
- •Understanding Interfaces
- •Interface Syntax
- •Interface Restrictions
- •Implementing an Interface
- •Referencing a Class Through Its Interface
- •Working with Multiple Interfaces
- •Abstract Classes
- •Abstract Methods
- •Sealed Classes
- •Sealed Methods
- •Implementing an Extensible Framework
- •Summarizing Keyword Combinations
- •Chapter 13 Quick Reference
- •The Life and Times of an Object
- •Writing Destructors
- •Why Use the Garbage Collector?
- •How Does the Garbage Collector Work?
- •Recommendations
- •Resource Management
- •Disposal Methods
- •Exception-Safe Disposal
- •The using Statement
- •Calling the Dispose Method from a Destructor
- •Making Code Exception-Safe
- •Chapter 14 Quick Reference
- •Implementing Encapsulation by Using Methods
- •What Are Properties?
- •Using Properties
- •Read-Only Properties
- •Write-Only Properties
- •Property Accessibility
- •Understanding the Property Restrictions
- •Declaring Interface Properties
- •Using Properties in a Windows Application
- •Generating Automatic Properties
- •Initializing Objects by Using Properties
- •Chapter 15 Quick Reference
- •What Is an Indexer?
- •An Example That Doesn’t Use Indexers
- •The Same Example Using Indexers
- •Understanding Indexer Accessors
- •Comparing Indexers and Arrays
- •Indexers in Interfaces
- •Using Indexers in a Windows Application
- •Chapter 16 Quick Reference
- •Declaring and Using Delegates
- •The Automated Factory Scenario
- •Implementing the Factory Without Using Delegates
- •Implementing the Factory by Using a Delegate
- •Using Delegates
- •Lambda Expressions and Delegates
- •Creating a Method Adapter
- •Using a Lambda Expression as an Adapter
- •The Form of Lambda Expressions
- •Declaring an Event
- •Subscribing to an Event
- •Unsubscribing from an Event
- •Raising an Event
- •Understanding WPF User Interface Events
- •Using Events
- •Chapter 17 Quick Reference
- •The Problem with objects
- •The Generics Solution
- •Generics vs. Generalized Classes
- •Generics and Constraints
- •Creating a Generic Class
- •The Theory of Binary Trees
- •Building a Binary Tree Class by Using Generics
- •Creating a Generic Method
- •Chapter 18 Quick Reference
- •Enumerating the Elements in a Collection
- •Manually Implementing an Enumerator
- •Implementing the IEnumerable Interface
- •Implementing an Enumerator by Using an Iterator
- •A Simple Iterator
- •Chapter 19 Quick Reference
- •What Is Language Integrated Query (LINQ)?
- •Using LINQ in a C# Application
- •Selecting Data
- •Filtering Data
- •Ordering, Grouping, and Aggregating Data
- •Joining Data
- •Using Query Operators
- •Querying Data in Tree<TItem> Objects
- •LINQ and Deferred Evaluation
- •Chapter 20 Quick Reference
- •Understanding Operators
- •Operator Constraints
- •Overloaded Operators
- •Creating Symmetric Operators
- •Understanding Compound Assignment
- •Declaring Increment and Decrement Operators
- •Implementing an Operator
- •Understanding Conversion Operators
- •Providing Built-In Conversions
- •Creating Symmetric Operators, Revisited
- •Adding an Implicit Conversion Operator
- •Chapter 21 Quick Reference
- •Creating a WPF Application
- •Creating a Windows Presentation Foundation Application
- •Adding Controls to the Form
- •Using WPF Controls
- •Changing Properties Dynamically
- •Handling Events in a WPF Form
- •Processing Events in Windows Forms
- •Chapter 22 Quick Reference
- •Menu Guidelines and Style
- •Menus and Menu Events
- •Creating a Menu
- •Handling Menu Events
- •Shortcut Menus
- •Creating Shortcut Menus
- •Windows Common Dialog Boxes
- •Using the SaveFileDialog Class
- •Chapter 23 Quick Reference
- •Validating Data
- •Strategies for Validating User Input
- •An Example—Customer Information Maintenance
- •Performing Validation by Using Data Binding
- •Changing the Point at Which Validation Occurs
- •Chapter 24 Quick Reference
- •Querying a Database by Using ADO.NET
- •The Northwind Database
- •Creating the Database
- •Using ADO.NET to Query Order Information
- •Querying a Database by Using DLINQ
- •Creating and Running a DLINQ Query
- •Deferred and Immediate Fetching
- •Joining Tables and Creating Relationships
- •Deferred and Immediate Fetching Revisited
- •Using DLINQ to Query Order Information
- •Chapter 25 Quick Reference
- •Using Data Binding with DLINQ
- •Using DLINQ to Modify Data
- •Updating Existing Data
- •Adding and Deleting Data
- •Chapter 26 Quick Reference
- •Understanding the Internet as an Infrastructure
- •Understanding Web Server Requests and Responses
- •Managing State
- •Understanding ASP.NET
- •Creating Web Applications with ASP.NET
- •Building an ASP.NET Application
- •Understanding Server Controls
- •Creating and Using a Theme
- •Chapter 27 Quick Reference
- •Comparing Server and Client Validations
- •Validating Data at the Web Server
- •Validating Data in the Web Browser
- •Implementing Client Validation
- •Chapter 28 Quick Reference
- •Managing Security
- •Understanding Forms-Based Security
- •Implementing Forms-Based Security
- •Querying and Displaying Data
- •Understanding the Web Forms GridView Control
- •Displaying Customer and Order History Information
- •Paging Data
- •Editing Data
- •Updating Rows Through a GridView Control
- •Navigating Between Forms
- •Chapter 29 Quick Reference
- •What Is a Web Service?
- •The Role of SOAP
- •What Is the Web Services Description Language?
- •Nonfunctional Requirements of Web Services
- •The Role of Windows Communication Foundation
- •Building a Web Service
- •Creating the ProductsService Web Service
- •Web Services, Clients, and Proxies
- •Talking SOAP: The Easy Way
- •Consuming the ProductsService Web Service
- •Chapter 30 Quick Reference
212 Part II Understanding the C# Language
The Console.WriteLine Method
The Console class contains many overloads for the WriteLine method. One of these overloads looks like this:
public static void WriteLine(string format, params object[] arg);
This overload enables the WriteLine method to support a format string argument that contains placeholders, each of which can be replaced at run time with a variable of any type. Here’s an example of a call to this method that you have seen several times in earlier chapters:
Console.WriteLine(“Name:{0}, Age:{1}”, name, age);
The compiler resolves this call into the following:
Console.WriteLine(“Name:{0}, Age:{1}”, new object[2]{name, age});
Using a params Array
In the following exercise, you will implement and test a static method named Util.Sum. The
purpose of this method is to calculate the sum of a variable number of int arguments passed to it, returning the result as an int. You will do this by writing Util.Sum to take a params int[] parameter. You will implement two checks on the params parameter to ensure that the Util. Sum method is completely robust. You will then call the Util.Sum method with a variety of
different arguments to test it.
Write a params array method
1.Start Microsoft Visual Studio 2008 if it is not already running.
2.Open the ParamsArray project, located in the \Microsoft Press\Visual CSharp Step by Step\Chapter 11\ ParamArrays folder in your Documents folder.
3.Display the Util.cs file in the Code and Text Editor window.
The Util.cs file contains an empty class named Util in the ParamsArray namespace.
4.Add a public static method named Sum to the Util class.
The Sum method returns an int and accepts a params array of int values. The Sum method should look like this:
public static int Sum(params int[] paramList)
{
}
The first step in implementing the Sum method is to check the paramList parameter. Apart from containing a valid set of integers, it could also be null or it could be
an array of zero length. In both of these cases, it is difficult to calculate the sum, so the best option is to throw an ArgumentException. (You could argue that the sum of
the integers in a zero-length array is 0, but we will treat this situation as an exception in this example.)
Chapter 11 Understanding Parameter Arrays |
213 |
5.Add code to Sum that throws an ArgumentException if paramList is null. The Sum method should now look like this:
public static int Sum(params int[] paramList)
{
if (paramList == null)
{
throw new ArgumentException(“Util.Sum: null parameter list”);
}
}
6.Add code to the Sum method that throws an ArgumentException if the length of array is 0, as shown in bold here:
public static int Sum(params int[] paramList)
{
if (paramList == null)
{
throw new ArgumentException(“Util.Sum: null parameter list”);
}
if (paramList.Length == 0)
{
throw new ArgumentException(“Util.Sum: empty parameter list”);
}
}
If the array passes these two tests, the next step is to add all the elements inside the array together.
7.You can use a foreach statement to add all the elements together. You will need a local variable to hold the running total. Declare an integer variable named sumTotal and initialize it to 0 following the code from the preceding step. Add a foreach statement to the Sum method to iterate through the paramList array. The body of this foreach loop should add each element in the array to sumTotal. At the end of the method, return the value of sumTotal by using a return statement.
class Util
{
public static int Sum(params int[] paramList)
{
...
int sumTotal = 0;
foreach (int i in paramList)
{
sumTotal += i;
}
return sumTotal;
}
}
8.On the Build menu, click Build Solution. Confirm that your solution builds without any errors.
214 |
Part II Understanding the C# Language |
Test the Util.Sum method
1.Display the Program.cs file in the Code and Text Editor window.
2.In the Code and Text Editor window, locate the Entrance method in the Program class.
3.Add the following statement to the Entrance method:
Console.WriteLine(Util.Sum(null));
4.On the Debug menu, click Start Without Debugging.
The program builds and runs, writing the following message to the console:
Exception: Util.Min: null parameter list
This confirms that the first check in the method works.
5.Press the Enter key to close the program and return to Visual Studio 2008.
6.In the Code and Text Editor window, change the call to Console.WriteLine in Entrance as shown here:
Console.WriteLine(Util.Sum());
This time, the method is being called without any arguments. The compiler will translate the empty argument list into an empty array.
7.On the Debug menu, click Start Without Debugging.
The program builds and runs, writing the following message to the console:
Exception: Util.Min: empty parameter list
This confirms that the second check in the method works.
8.Press the Enter key to close the program and return to Visual Studio 2008.
9.Change the call to Console.WriteLine in Entrance as follows:
Console.WriteLine(Util.Sum(10, 9, 8, 7, 6, 5, 4, 3, 2, 1));
10.On the Debug menu, click Start Without Debugging. The program builds, runs, and writes 55 to the console.
11.Press Enter to close the application.
In this chapter, you have learned how to use a params array to define a method that can take any number of arguments. You have also seen how to use a params array of object types to
create a method that accepts any number of arguments of any type.
