- •Contents at a Glance
- •Table of Contents
- •Acknowledgments
- •Introduction
- •Who This Book Is For
- •Finding Your Best Starting Point in This Book
- •Conventions and Features in This Book
- •Conventions
- •Other Features
- •System Requirements
- •Code Samples
- •Installing the Code Samples
- •Using the Code Samples
- •Support for This Book
- •Questions and Comments
- •Beginning Programming with the Visual Studio 2008 Environment
- •Writing Your First Program
- •Using Namespaces
- •Creating a Graphical Application
- •Chapter 1 Quick Reference
- •Understanding Statements
- •Identifying Keywords
- •Using Variables
- •Naming Variables
- •Declaring Variables
- •Working with Primitive Data Types
- •Displaying Primitive Data Type Values
- •Using Arithmetic Operators
- •Operators and Types
- •Examining Arithmetic Operators
- •Controlling Precedence
- •Using Associativity to Evaluate Expressions
- •Associativity and the Assignment Operator
- •Incrementing and Decrementing Variables
- •Declaring Implicitly Typed Local Variables
- •Chapter 2 Quick Reference
- •Declaring Methods
- •Specifying the Method Declaration Syntax
- •Writing return Statements
- •Calling Methods
- •Specifying the Method Call Syntax
- •Applying Scope
- •Overloading Methods
- •Writing Methods
- •Chapter 3 Quick Reference
- •Declaring Boolean Variables
- •Using Boolean Operators
- •Understanding Equality and Relational Operators
- •Understanding Conditional Logical Operators
- •Summarizing Operator Precedence and Associativity
- •Using if Statements to Make Decisions
- •Understanding if Statement Syntax
- •Using Blocks to Group Statements
- •Cascading if Statements
- •Using switch Statements
- •Understanding switch Statement Syntax
- •Following the switch Statement Rules
- •Chapter 4 Quick Reference
- •Using Compound Assignment Operators
- •Writing while Statements
- •Writing for Statements
- •Understanding for Statement Scope
- •Writing do Statements
- •Chapter 5 Quick Reference
- •Coping with Errors
- •Trying Code and Catching Exceptions
- •Handling an Exception
- •Using Multiple catch Handlers
- •Catching Multiple Exceptions
- •Using Checked and Unchecked Integer Arithmetic
- •Writing Checked Statements
- •Writing Checked Expressions
- •Throwing Exceptions
- •Chapter 6 Quick Reference
- •The Purpose of Encapsulation
- •Controlling Accessibility
- •Working with Constructors
- •Overloading Constructors
- •Understanding static Methods and Data
- •Creating a Shared Field
- •Creating a static Field by Using the const Keyword
- •Chapter 7 Quick Reference
- •Copying Value Type Variables and Classes
- •Understanding Null Values and Nullable Types
- •Using Nullable Types
- •Understanding the Properties of Nullable Types
- •Using ref and out Parameters
- •Creating ref Parameters
- •Creating out Parameters
- •How Computer Memory Is Organized
- •Using the Stack and the Heap
- •The System.Object Class
- •Boxing
- •Unboxing
- •Casting Data Safely
- •The is Operator
- •The as Operator
- •Chapter 8 Quick Reference
- •Working with Enumerations
- •Declaring an Enumeration
- •Using an Enumeration
- •Choosing Enumeration Literal Values
- •Choosing an Enumeration’s Underlying Type
- •Working with Structures
- •Declaring a Structure
- •Understanding Structure and Class Differences
- •Declaring Structure Variables
- •Understanding Structure Initialization
- •Copying Structure Variables
- •Chapter 9 Quick Reference
- •What Is an Array?
- •Declaring Array Variables
- •Creating an Array Instance
- •Initializing Array Variables
- •Creating an Implicitly Typed Array
- •Accessing an Individual Array Element
- •Iterating Through an Array
- •Copying Arrays
- •What Are Collection Classes?
- •The ArrayList Collection Class
- •The Queue Collection Class
- •The Stack Collection Class
- •The Hashtable Collection Class
- •The SortedList Collection Class
- •Using Collection Initializers
- •Comparing Arrays and Collections
- •Using Collection Classes to Play Cards
- •Chapter 10 Quick Reference
- •Using Array Arguments
- •Declaring a params Array
- •Using params object[ ]
- •Using a params Array
- •Chapter 11 Quick Reference
- •What Is Inheritance?
- •Using Inheritance
- •Base Classes and Derived Classes
- •Calling Base Class Constructors
- •Assigning Classes
- •Declaring new Methods
- •Declaring Virtual Methods
- •Declaring override Methods
- •Understanding protected Access
- •Understanding Extension Methods
- •Chapter 12 Quick Reference
- •Understanding Interfaces
- •Interface Syntax
- •Interface Restrictions
- •Implementing an Interface
- •Referencing a Class Through Its Interface
- •Working with Multiple Interfaces
- •Abstract Classes
- •Abstract Methods
- •Sealed Classes
- •Sealed Methods
- •Implementing an Extensible Framework
- •Summarizing Keyword Combinations
- •Chapter 13 Quick Reference
- •The Life and Times of an Object
- •Writing Destructors
- •Why Use the Garbage Collector?
- •How Does the Garbage Collector Work?
- •Recommendations
- •Resource Management
- •Disposal Methods
- •Exception-Safe Disposal
- •The using Statement
- •Calling the Dispose Method from a Destructor
- •Making Code Exception-Safe
- •Chapter 14 Quick Reference
- •Implementing Encapsulation by Using Methods
- •What Are Properties?
- •Using Properties
- •Read-Only Properties
- •Write-Only Properties
- •Property Accessibility
- •Understanding the Property Restrictions
- •Declaring Interface Properties
- •Using Properties in a Windows Application
- •Generating Automatic Properties
- •Initializing Objects by Using Properties
- •Chapter 15 Quick Reference
- •What Is an Indexer?
- •An Example That Doesn’t Use Indexers
- •The Same Example Using Indexers
- •Understanding Indexer Accessors
- •Comparing Indexers and Arrays
- •Indexers in Interfaces
- •Using Indexers in a Windows Application
- •Chapter 16 Quick Reference
- •Declaring and Using Delegates
- •The Automated Factory Scenario
- •Implementing the Factory Without Using Delegates
- •Implementing the Factory by Using a Delegate
- •Using Delegates
- •Lambda Expressions and Delegates
- •Creating a Method Adapter
- •Using a Lambda Expression as an Adapter
- •The Form of Lambda Expressions
- •Declaring an Event
- •Subscribing to an Event
- •Unsubscribing from an Event
- •Raising an Event
- •Understanding WPF User Interface Events
- •Using Events
- •Chapter 17 Quick Reference
- •The Problem with objects
- •The Generics Solution
- •Generics vs. Generalized Classes
- •Generics and Constraints
- •Creating a Generic Class
- •The Theory of Binary Trees
- •Building a Binary Tree Class by Using Generics
- •Creating a Generic Method
- •Chapter 18 Quick Reference
- •Enumerating the Elements in a Collection
- •Manually Implementing an Enumerator
- •Implementing the IEnumerable Interface
- •Implementing an Enumerator by Using an Iterator
- •A Simple Iterator
- •Chapter 19 Quick Reference
- •What Is Language Integrated Query (LINQ)?
- •Using LINQ in a C# Application
- •Selecting Data
- •Filtering Data
- •Ordering, Grouping, and Aggregating Data
- •Joining Data
- •Using Query Operators
- •Querying Data in Tree<TItem> Objects
- •LINQ and Deferred Evaluation
- •Chapter 20 Quick Reference
- •Understanding Operators
- •Operator Constraints
- •Overloaded Operators
- •Creating Symmetric Operators
- •Understanding Compound Assignment
- •Declaring Increment and Decrement Operators
- •Implementing an Operator
- •Understanding Conversion Operators
- •Providing Built-In Conversions
- •Creating Symmetric Operators, Revisited
- •Adding an Implicit Conversion Operator
- •Chapter 21 Quick Reference
- •Creating a WPF Application
- •Creating a Windows Presentation Foundation Application
- •Adding Controls to the Form
- •Using WPF Controls
- •Changing Properties Dynamically
- •Handling Events in a WPF Form
- •Processing Events in Windows Forms
- •Chapter 22 Quick Reference
- •Menu Guidelines and Style
- •Menus and Menu Events
- •Creating a Menu
- •Handling Menu Events
- •Shortcut Menus
- •Creating Shortcut Menus
- •Windows Common Dialog Boxes
- •Using the SaveFileDialog Class
- •Chapter 23 Quick Reference
- •Validating Data
- •Strategies for Validating User Input
- •An Example—Customer Information Maintenance
- •Performing Validation by Using Data Binding
- •Changing the Point at Which Validation Occurs
- •Chapter 24 Quick Reference
- •Querying a Database by Using ADO.NET
- •The Northwind Database
- •Creating the Database
- •Using ADO.NET to Query Order Information
- •Querying a Database by Using DLINQ
- •Creating and Running a DLINQ Query
- •Deferred and Immediate Fetching
- •Joining Tables and Creating Relationships
- •Deferred and Immediate Fetching Revisited
- •Using DLINQ to Query Order Information
- •Chapter 25 Quick Reference
- •Using Data Binding with DLINQ
- •Using DLINQ to Modify Data
- •Updating Existing Data
- •Adding and Deleting Data
- •Chapter 26 Quick Reference
- •Understanding the Internet as an Infrastructure
- •Understanding Web Server Requests and Responses
- •Managing State
- •Understanding ASP.NET
- •Creating Web Applications with ASP.NET
- •Building an ASP.NET Application
- •Understanding Server Controls
- •Creating and Using a Theme
- •Chapter 27 Quick Reference
- •Comparing Server and Client Validations
- •Validating Data at the Web Server
- •Validating Data in the Web Browser
- •Implementing Client Validation
- •Chapter 28 Quick Reference
- •Managing Security
- •Understanding Forms-Based Security
- •Implementing Forms-Based Security
- •Querying and Displaying Data
- •Understanding the Web Forms GridView Control
- •Displaying Customer and Order History Information
- •Paging Data
- •Editing Data
- •Updating Rows Through a GridView Control
- •Navigating Between Forms
- •Chapter 29 Quick Reference
- •What Is a Web Service?
- •The Role of SOAP
- •What Is the Web Services Description Language?
- •Nonfunctional Requirements of Web Services
- •The Role of Windows Communication Foundation
- •Building a Web Service
- •Creating the ProductsService Web Service
- •Web Services, Clients, and Proxies
- •Talking SOAP: The Easy Way
- •Consuming the ProductsService Web Service
- •Chapter 30 Quick Reference
124 Part II Understanding the C# Language
objects that share these common behaviors and attributes. As long as everyone agrees on what a word means, this system works well; you can express complex but precise ideas in a concise form. Without classification, it’s hard to imagine how people could think or communicate at all.
Given that classification is so deeply ingrained in the way we think and communicate, it makes sense to try to write programs by classifying the different concepts inherent in a problem and its solution and then modeling these classes in a programming language. This is exactly what you can do with modern object-oriented programming languages, such as Microsoft Visual C#.
The Purpose of Encapsulation
Encapsulation is an important principle when defining classes. The idea is that a program that uses a class should not have to worry how that class actually works internally; the program simply creates an instance of a class and calls the methods of that class. As long as those
methods do what they say they will do, the program does not care how they are implemented. For example, when you call the Console.WriteLine method, you don’t want to be bothered with all the intricate details of how the Console class physically arranges for data to be writ-
ten to the screen. A class might need to maintain all sorts of internal state information to perform its various methods. This additional state information and activity is hidden from the program that is using the class. Therefore, encapsulation is sometimes referred to as information hiding. Encapsulation actually has two purposes:
To combine methods and data inside a class; in other words, to support classification
To control the accessibility of the methods and data; in other words, to control the use of the class
Defining and Using a Class
In C#, you use the class keyword to define a new class. The data and methods of the class occur in the body of the class between a pair of braces. Here is a C# class called Circle that con-
tains one method (to calculate the circle’s area) and one piece of data (the circle’s radius):
class Circle
{
double Area()
{
return Math.PI * radius * radius;
}
int radius;
}
Chapter 7 Creating and Managing Classes and Objects |
125 |
Note The Math class contains methods for performing mathematical calculations and fields containing mathematical constants. The Math.PI field contains the value 3.14159265358979323846, which is an approximation of the value of pi.
The body of a class contains ordinary methods (such as Area) and fields (such as radius)— remember that variables in a class are called fields. You’ve already seen how to declare variables in Chapter 2, “Working with Variables, Operators, and Expressions,” and how to write methods in Chapter 3, “Writing Methods and Applying Scope”; in fact, there’s almost no new syntax here.
Using the Circle class is similar to using other types that you have already met; you create a variable specifying Circle as its type, and then you initialize the variable with some valid data.
Here is an example:
Circle c; |
// |
Create a Circle variable |
c = new Circle(); |
// |
Initialize it |
Note the use of the new keyword. Previously, when you initialized a variable such as an int or a float, you simply assigned it a value:
int i; i = 42;
You cannot do the same with variables of class types. One reason is that C# just doesn’t provide the syntax for assigning literal class values to variables. (What is the Circle equivalent
of 42?) Another reason concerns the way in which memory for variables of class types is allocated and managed by the runtime—this is discussed further in Chapter 8, “Understanding Values and References.” For now, just accept that the new keyword creates a new instance of a class (more commonly called an object).
You can, however, directly assign an instance of a class to another variable of the same type, like this:
Circle c;
c = new Circle(); Circle d;
d = c;
However, this is not as straightforward as it first appears, for reasons that I cover in Chapter 8.
Important Don’t get confused between the terms class and object. A class is the definition of a type. An object is an instance of that type, created when the program runs.
126 |
Part II Understanding the C# Language |
Controlling Accessibility
Surprisingly, the Circle class is currently of no practical use. When you encapsulate your meth-
ods and data inside a class, the class forms a boundary to the outside world. Fields (such as radius) and methods (such as Area) defined in the class can be seen by other methods inside
the class but not by the outside world—they are private to the class. So, although you can create a Circle object in a program, you cannot access its radius field or call its Area method,
which is why the class is not of much use—yet! However, you can modify the definition of a field or method with the public and private keywords to control whether it is accessible from
the outside:
A method or field is said to be private if it is accessible only from the inside of the class. To declare that a method or field is private, you write the keyword private before its declaration. This is actually the default, but it is good practice to state explicitly that fields and methods are private to avoid any confusion.
A method or field is said to be public if it is accessible from both the inside and the outside of the class. To declare that a method or field is public, you write the keyword public before its declaration.
Here is the Circle class again. This time Area is declared as a public method and radius is declared as a private field:
class Circle
{
public double Area()
{
return Math.PI * radius * radius;
}
private int radius;
}
Note C++ programmers should note that there is no colon after the public and private keywords. You must repeat the keyword for every field and method declaration.
Note that radius is declared as a private field; it is not accessible from outside the class. However, radius is accessible from inside the Circle class. This is why the Area method can access the radius field; Area is inside the Circle class, so the body of Area has access to radius.
This means that the class is still of limited value because there is no way of initializing the radius field. To fix this, you can use a constructor.
Tip The fields in a class are automatically initialized to 0, false, or null depending on their type. However, it is still good practice to provide an explicit means of initializing fields.
