- •Contents at a Glance
- •Table of Contents
- •Acknowledgments
- •Introduction
- •Who This Book Is For
- •Finding Your Best Starting Point in This Book
- •Conventions and Features in This Book
- •Conventions
- •Other Features
- •System Requirements
- •Code Samples
- •Installing the Code Samples
- •Using the Code Samples
- •Support for This Book
- •Questions and Comments
- •Beginning Programming with the Visual Studio 2008 Environment
- •Writing Your First Program
- •Using Namespaces
- •Creating a Graphical Application
- •Chapter 1 Quick Reference
- •Understanding Statements
- •Identifying Keywords
- •Using Variables
- •Naming Variables
- •Declaring Variables
- •Working with Primitive Data Types
- •Displaying Primitive Data Type Values
- •Using Arithmetic Operators
- •Operators and Types
- •Examining Arithmetic Operators
- •Controlling Precedence
- •Using Associativity to Evaluate Expressions
- •Associativity and the Assignment Operator
- •Incrementing and Decrementing Variables
- •Declaring Implicitly Typed Local Variables
- •Chapter 2 Quick Reference
- •Declaring Methods
- •Specifying the Method Declaration Syntax
- •Writing return Statements
- •Calling Methods
- •Specifying the Method Call Syntax
- •Applying Scope
- •Overloading Methods
- •Writing Methods
- •Chapter 3 Quick Reference
- •Declaring Boolean Variables
- •Using Boolean Operators
- •Understanding Equality and Relational Operators
- •Understanding Conditional Logical Operators
- •Summarizing Operator Precedence and Associativity
- •Using if Statements to Make Decisions
- •Understanding if Statement Syntax
- •Using Blocks to Group Statements
- •Cascading if Statements
- •Using switch Statements
- •Understanding switch Statement Syntax
- •Following the switch Statement Rules
- •Chapter 4 Quick Reference
- •Using Compound Assignment Operators
- •Writing while Statements
- •Writing for Statements
- •Understanding for Statement Scope
- •Writing do Statements
- •Chapter 5 Quick Reference
- •Coping with Errors
- •Trying Code and Catching Exceptions
- •Handling an Exception
- •Using Multiple catch Handlers
- •Catching Multiple Exceptions
- •Using Checked and Unchecked Integer Arithmetic
- •Writing Checked Statements
- •Writing Checked Expressions
- •Throwing Exceptions
- •Chapter 6 Quick Reference
- •The Purpose of Encapsulation
- •Controlling Accessibility
- •Working with Constructors
- •Overloading Constructors
- •Understanding static Methods and Data
- •Creating a Shared Field
- •Creating a static Field by Using the const Keyword
- •Chapter 7 Quick Reference
- •Copying Value Type Variables and Classes
- •Understanding Null Values and Nullable Types
- •Using Nullable Types
- •Understanding the Properties of Nullable Types
- •Using ref and out Parameters
- •Creating ref Parameters
- •Creating out Parameters
- •How Computer Memory Is Organized
- •Using the Stack and the Heap
- •The System.Object Class
- •Boxing
- •Unboxing
- •Casting Data Safely
- •The is Operator
- •The as Operator
- •Chapter 8 Quick Reference
- •Working with Enumerations
- •Declaring an Enumeration
- •Using an Enumeration
- •Choosing Enumeration Literal Values
- •Choosing an Enumeration’s Underlying Type
- •Working with Structures
- •Declaring a Structure
- •Understanding Structure and Class Differences
- •Declaring Structure Variables
- •Understanding Structure Initialization
- •Copying Structure Variables
- •Chapter 9 Quick Reference
- •What Is an Array?
- •Declaring Array Variables
- •Creating an Array Instance
- •Initializing Array Variables
- •Creating an Implicitly Typed Array
- •Accessing an Individual Array Element
- •Iterating Through an Array
- •Copying Arrays
- •What Are Collection Classes?
- •The ArrayList Collection Class
- •The Queue Collection Class
- •The Stack Collection Class
- •The Hashtable Collection Class
- •The SortedList Collection Class
- •Using Collection Initializers
- •Comparing Arrays and Collections
- •Using Collection Classes to Play Cards
- •Chapter 10 Quick Reference
- •Using Array Arguments
- •Declaring a params Array
- •Using params object[ ]
- •Using a params Array
- •Chapter 11 Quick Reference
- •What Is Inheritance?
- •Using Inheritance
- •Base Classes and Derived Classes
- •Calling Base Class Constructors
- •Assigning Classes
- •Declaring new Methods
- •Declaring Virtual Methods
- •Declaring override Methods
- •Understanding protected Access
- •Understanding Extension Methods
- •Chapter 12 Quick Reference
- •Understanding Interfaces
- •Interface Syntax
- •Interface Restrictions
- •Implementing an Interface
- •Referencing a Class Through Its Interface
- •Working with Multiple Interfaces
- •Abstract Classes
- •Abstract Methods
- •Sealed Classes
- •Sealed Methods
- •Implementing an Extensible Framework
- •Summarizing Keyword Combinations
- •Chapter 13 Quick Reference
- •The Life and Times of an Object
- •Writing Destructors
- •Why Use the Garbage Collector?
- •How Does the Garbage Collector Work?
- •Recommendations
- •Resource Management
- •Disposal Methods
- •Exception-Safe Disposal
- •The using Statement
- •Calling the Dispose Method from a Destructor
- •Making Code Exception-Safe
- •Chapter 14 Quick Reference
- •Implementing Encapsulation by Using Methods
- •What Are Properties?
- •Using Properties
- •Read-Only Properties
- •Write-Only Properties
- •Property Accessibility
- •Understanding the Property Restrictions
- •Declaring Interface Properties
- •Using Properties in a Windows Application
- •Generating Automatic Properties
- •Initializing Objects by Using Properties
- •Chapter 15 Quick Reference
- •What Is an Indexer?
- •An Example That Doesn’t Use Indexers
- •The Same Example Using Indexers
- •Understanding Indexer Accessors
- •Comparing Indexers and Arrays
- •Indexers in Interfaces
- •Using Indexers in a Windows Application
- •Chapter 16 Quick Reference
- •Declaring and Using Delegates
- •The Automated Factory Scenario
- •Implementing the Factory Without Using Delegates
- •Implementing the Factory by Using a Delegate
- •Using Delegates
- •Lambda Expressions and Delegates
- •Creating a Method Adapter
- •Using a Lambda Expression as an Adapter
- •The Form of Lambda Expressions
- •Declaring an Event
- •Subscribing to an Event
- •Unsubscribing from an Event
- •Raising an Event
- •Understanding WPF User Interface Events
- •Using Events
- •Chapter 17 Quick Reference
- •The Problem with objects
- •The Generics Solution
- •Generics vs. Generalized Classes
- •Generics and Constraints
- •Creating a Generic Class
- •The Theory of Binary Trees
- •Building a Binary Tree Class by Using Generics
- •Creating a Generic Method
- •Chapter 18 Quick Reference
- •Enumerating the Elements in a Collection
- •Manually Implementing an Enumerator
- •Implementing the IEnumerable Interface
- •Implementing an Enumerator by Using an Iterator
- •A Simple Iterator
- •Chapter 19 Quick Reference
- •What Is Language Integrated Query (LINQ)?
- •Using LINQ in a C# Application
- •Selecting Data
- •Filtering Data
- •Ordering, Grouping, and Aggregating Data
- •Joining Data
- •Using Query Operators
- •Querying Data in Tree<TItem> Objects
- •LINQ and Deferred Evaluation
- •Chapter 20 Quick Reference
- •Understanding Operators
- •Operator Constraints
- •Overloaded Operators
- •Creating Symmetric Operators
- •Understanding Compound Assignment
- •Declaring Increment and Decrement Operators
- •Implementing an Operator
- •Understanding Conversion Operators
- •Providing Built-In Conversions
- •Creating Symmetric Operators, Revisited
- •Adding an Implicit Conversion Operator
- •Chapter 21 Quick Reference
- •Creating a WPF Application
- •Creating a Windows Presentation Foundation Application
- •Adding Controls to the Form
- •Using WPF Controls
- •Changing Properties Dynamically
- •Handling Events in a WPF Form
- •Processing Events in Windows Forms
- •Chapter 22 Quick Reference
- •Menu Guidelines and Style
- •Menus and Menu Events
- •Creating a Menu
- •Handling Menu Events
- •Shortcut Menus
- •Creating Shortcut Menus
- •Windows Common Dialog Boxes
- •Using the SaveFileDialog Class
- •Chapter 23 Quick Reference
- •Validating Data
- •Strategies for Validating User Input
- •An Example—Customer Information Maintenance
- •Performing Validation by Using Data Binding
- •Changing the Point at Which Validation Occurs
- •Chapter 24 Quick Reference
- •Querying a Database by Using ADO.NET
- •The Northwind Database
- •Creating the Database
- •Using ADO.NET to Query Order Information
- •Querying a Database by Using DLINQ
- •Creating and Running a DLINQ Query
- •Deferred and Immediate Fetching
- •Joining Tables and Creating Relationships
- •Deferred and Immediate Fetching Revisited
- •Using DLINQ to Query Order Information
- •Chapter 25 Quick Reference
- •Using Data Binding with DLINQ
- •Using DLINQ to Modify Data
- •Updating Existing Data
- •Adding and Deleting Data
- •Chapter 26 Quick Reference
- •Understanding the Internet as an Infrastructure
- •Understanding Web Server Requests and Responses
- •Managing State
- •Understanding ASP.NET
- •Creating Web Applications with ASP.NET
- •Building an ASP.NET Application
- •Understanding Server Controls
- •Creating and Using a Theme
- •Chapter 27 Quick Reference
- •Comparing Server and Client Validations
- •Validating Data at the Web Server
- •Validating Data in the Web Browser
- •Implementing Client Validation
- •Chapter 28 Quick Reference
- •Managing Security
- •Understanding Forms-Based Security
- •Implementing Forms-Based Security
- •Querying and Displaying Data
- •Understanding the Web Forms GridView Control
- •Displaying Customer and Order History Information
- •Paging Data
- •Editing Data
- •Updating Rows Through a GridView Control
- •Navigating Between Forms
- •Chapter 29 Quick Reference
- •What Is a Web Service?
- •The Role of SOAP
- •What Is the Web Services Description Language?
- •Nonfunctional Requirements of Web Services
- •The Role of Windows Communication Foundation
- •Building a Web Service
- •Creating the ProductsService Web Service
- •Web Services, Clients, and Proxies
- •Talking SOAP: The Easy Way
- •Consuming the ProductsService Web Service
- •Chapter 30 Quick Reference
560 |
Part VI Building Web Applications |
Understanding the Internet as an Infrastructure
The Internet is a big network (all right—a really big network), and, as a result, the information and data that you can access over it can be quite remote. This should have an impact on the way you design your applications. For example, you might get away with repeatedly querying and fetching individual rows of data held in a database while a user browses it in a small, local desktop application, but this strategy will not be feasible for an application that runs over the Internet. Resource use affects scalability much more for the Internet than it does for local applications.
Network bandwidth is a scarce resource that should be used sparingly. You might notice variations in the performance of your own local network according to the time of day (networks always seem to slow down on a Friday afternoon just when you are trying to get everything done before the weekend), the applications that users in your company are running, and many other factors. But no matter how variable the performance of your own local network is, the Internet is far less predictable. You are dependent on any number of servers routing your requests from your Web browser to the site you are trying to access, and the replies can get passed back along an equally tortuous route. The network protocols and data presentation mechanisms that underpin the Internet reflect the fact that networks can be (and at times most certainly will be) unreliable and that a Web application can be accessed concurrently from many different Web browsers running on many different operating systems.
Understanding Web Server Requests and Responses
A Web browser communicates with a Web application over the Internet by using the Hypertext Transfer Protocol (HTTP). Web applications are usually hosted by some sort of Web
server that reads HTTP requests and determines which application should be used to respond to the request. The term application in this sense is a very loose term—the Web server might
invoke an executable program to perform an action, or it might process the request itself by using its own internal logic or other means. However the request is processed, the Web server will send a response to the client, again by using HTTP. The content of an HTTP response is usually presented as a Hypertext Markup Language (HTML) page; this is the language that most browsers understand and know how to render.
Note Applications run by users that access Web applications over the Internet are often referred to as clients or client applications.
Chapter 27 Introducing ASP.NET |
561 |
Managing State
HTTP is a connectionless protocol. This means that a request (or a response) is a stand-alone packet of data. A typical exchange between a client and a Web application might involve several requests. For example, the Web application might send the client application an HTML page. The user might enter data onto this page, click some buttons, and expect the display to change as a result so that the user can enter more data, and so on. Each request sent by the client to the Web application is separate from any other requests sent both by this client and by any other clients using the same Web application simultaneously.
A client request often requires some sort of context or state. For example, consider the following common scenario. The user can browse goods for sale by using a Web application. The user might want to buy several items and places each one in a virtual shopping cart. A useful feature of such a Web application is the ability to display the current contents of the shopping cart. Where should the contents of the shopping cart (the client’s state) be held? If this information is held on the Web server, the Web server must be able to piece together the different HTTP requests and determine which requests come from one client and which come from others. This is feasible but might require additional processing to reconcile client requests against state information, and, of course, it would require some sort of database to persist that state information between client requests. A complication with this technique is that the Web server has no guarantee, after the state information has been preserved, that
the client will submit another request that uses or removes the information. If the Web server saved every bit of state information for every client that accessed it, it would need a very big database indeed!
An alternative strategy is to store state information on the client machine. The Cookie Protocol was developed so that Web servers can cache information in cookies (small files) on
the client computer. The disadvantage of this approach is that the application has to arrange for the data in the cookie to be transmitted over the Web as part of every HTTP request so that the Web server can access it. The application also has to ensure that cookies are of a limited size. Perhaps the most significant drawback of cookies is that users can disable them and prevent the Web browser from storing them on user computers, causing the Web application to lose all of its state information.
Understanding ASP.NET
From the discussion in the preceding section, you can see that a framework for building and running Web applications has a number of items that it should address. It must do the following:
Support HTTP
Manage client state efficiently
562 |
Part VI Building Web Applications |
Provide tools allowing for the easy development of Web applications
Generate applications that can be accessed from any browser that supports HTML
Be responsive and scalable
Microsoft originally developed the Active Server Pages (ASP) model in response to many of these issues. By using ASP, developers can embed application code in HTML pages. A Web server such as Microsoft Internet Information Services (IIS) could execute the application code and use it to generate an HTML response. However, ASP did have its problems: you had to write a lot of application code to do relatively simple things, such as display a page of data from a database; mixing application code and HTML caused readability and maintenance issues; and performance was not always what it could be because ASP pages had to interpret application code in an HTML request every time the request was submitted, even if it was the same code each time.
With the advent of the .NET Framework, Microsoft updated the ASP model and created ASP.NET. The main features of the latest release of ASP.NET include the following:
A rationalized program model using Web forms that contain presentation logic and code files that separate out the business logic. You can write code in any of the languages supported by the .NET Framework, including C#. ASP.NET Web forms are compiled and cached on the Web server to improve performance.
Server controls that support server-side events but that are rendered as HTML so that they can operate correctly in any HTML-compliant browser. Microsoft has extended many of the standard HTML controls as well so that you can manipulate them in your code.
Powerful controls for displaying, editing, and maintaining data from a database.
Options for caching client state using cookies on the client’s computer, in a special service (the ASP.NET State service) on the Web server, or in a Microsoft SQL Server database. The cache is easily programmable by using code.
Enhanced page design and layout by using Master Pages, themes, and Web Parts. You can use Master Pages to quickly provide a common layout for all Web pages in an application. Themes help you implement a consistent look and feel across the Web site, ensuring that all controls appear in the same way if required. With Web Parts, you can create modular Web pages that users can customize to their own requirements. You will use themes later in this chapter. Using Master Pages and Web Parts is outside the scope of this book.
Data source controls for binding data to Web pages. By using these new controls, you can build applications that can display and edit data quickly and easily. The data source controls can operate with a variety of data sources, such as DLINQ entity objects,
SQL Server databases, Microsoft Access databases, XML files, Web services, and other
