Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BIOKN04.DOC
Скачиваний:
81
Добавлен:
24.03.2016
Размер:
193.54 Кб
Скачать

3. Геном человека и генетика ххi века

В 1988-м году с идеей о том, что наука вплотную приблизилась к раскрытиюхимической основы наследственности человека выступил выдающийся российский молекулярный биолог и биохимик, академик А.А. Баев (1904-1994). После консультаций с коллегами он обратился к М.С. Горбачеву с письмом, в котором предложил организовать государственный научный проект по изучению генома человека. В России, как и за ее пределами, эта идея была встречена весьма критически. Однако, очень скоро научное сообщество во всем мире стало обсуждать эту проблему.

С 1989 г. и в США, и в России функционируют соответствующие научные программы; позднее возникла Международная организация по изучению генома человека (HUGO), вице-президентом которой несколько лет был академик А.Д. Мирзабеков.

В России по решению правительства было открыто финансирование и организован Научный совет по программе "Геном человека" под руководством А.А. Баева. Расположившийся в головном учреждении программы - Институте молекулярной биологии им. В.А. Энгельгардта РАН, - совет весьма быстро создал инфраструктуру, объединил исследования многих разрозненных групп, преодолевая ведомственные барьеры и географическую удаленность. Важно подчеркнуть, что с самого начала работ по геномному проекту мир договорился об открытости, доступности всей получаемой информации для его участников независимо от их вклада и государственной принадлежности. Сейчас существуют десятки мощных «баз данных», в которых аккумулирована гигантская информация о структуре не только генома человека, но и геномов многих других организмов.

Вклад России в международное сотрудничество признан в мире: 70 отечественных исследователей являются членами HUGO (избрание осуществляется тайным голосованием на основании международных публикаций кандидатов). В международной научной прессе за десятилетие функционирования российской национальной программы опубликовано свыше 400 работ, в «банках данных» зарегистрировано более миллиона нуклеотидных пар фрагментов ДНК человека, многие сотни «маркеров», что имеет большое значение для детального анализа генома человека. Российская геномная программа финансируется Министерством науки и технологий РФ и поддерживается Президиумом РАН.

4. Геномика - ключевое слово новой биологии

В российской национальной программе важное место занимают, помимо структурного и функционального анализа генома, два направления исследований: компьютерный анализ генома и медицинские приложения - медицинская геномика. Создано программное обеспечение, позволяющее опознавать кодирующие и некодирую- щие участки генома по анализу нуклеотидной последовательности, а затем это компьютерное предсказание проверять экспериментально; организованы «базы данных» в Москве, Новосибирске, Пущине, где систематизируются непрерывно пополняющиеся сведения о геномике человека. Благодаря тому, что в мире идентифицировано множество генов, ответственных за многие болезни человека, в том числе онкологические, наследственные, нейродегенеративные, возникли и бурно прогрессируют два направления медицинской геномики - геномная диагностика, а также поиск и идентификация не только "больных" генов, ответственных за те или иные патологии, но и генов, определяющих предрасположенность ко многим тяжелым болезням человека. Медико-генетические центры Москвы, Санкт-Петербурга, Томска, Новосибирска активно используют и развивают методы геномной диагностики, включая дородовую (пренатальную).

В 1999 г. в рамках российской программы работали около 400 исследователей в составе примерно 100 групп из 30 научных учреждений РАН и РАМН, госцентров и университетов. За достижения в геномике 16 российских ученых удостоены премии имени А.А. Баева, учрежденной Научным советом по программе "Геном человека" в честь организатора и первого руководителя геномной программы России.

В 1999 г. в нашей стране можно было диагностировать не менее 30 различных заболеваний, главным образом наслелственных: болезнь Альцгеймера, болезнь Гоше, атаксию, муковисцилоз, мышечную дистрофию Дюшенна, дистонию, гемофилию А и В, миотоническую дистрофию, нейрофиброматоз 1-го типа, фенилкетонурию, серповидно-клеточную анемию, талассемию, синдром хрупкости Х-хромосомы, хорею Хантингтона, наследуемый рак молочных желез и яичников и др.

В начале 2000 г. американская фирма "Celera", возглавляемая выдающимся исследователем и организатором К.Вентерем, расшифровывает (секвенирует) не менее 10 млн. нуклеотидных пар в сутки. На фирме секвенирование ДНК осуществляют около 250 приборов, снабженных роботами, которые функционируют в автоматическом режиме и передают всю информацию непосредственно в «банки данных», где она систематизируется, аннотируется и становится доступной ученым всего мира. Вентер официально объявил, что "Celefa" планирует завершить расшифровку генома человека к концу 2001 г. В свою очередь Консорциум европейских и японских центров расшифровки структуры ДНК сообщил, что ту же цель планирует достичь к 2003 г.

Очевидно, что это соревнование (независимо от того, кто придет к финишу первым) в ближайшие два-три года завершится достижением эпохальной цели - познанием всего наследственного материала человека на уровне его точного химического строения.

Исследования генома человека с самого начала потянули за собой исследования геномов огромного числа других организмов, гораздо более простых. Их расшифровка ведется во все возрастающем темпе и объеме параллельно с изучением человеческого генома.

Что же сделано конкретно к концу 1999 г.? Известна полная геномная структура свыше 100 микроорганизмов среди которых как обычные бактерии, в том числе вызывающие многие тяжелые заболевания человека и животных, так и архебактерии - особое царство живой природы, находящееся как бы между клеточными организмами (эукариоты) и истинными бактериями (прокариоты).

Мы знаем полное строение генома пекарских дрожжей - первого одноклеточного эукариотического организма (гриб - согласно биологической классификации) и полную структуру генома первого многоклеточного организма - круглого червя (нематоды), завершена расшифровка ДНК первого насекомого - плодовой мушки дрозофилы и первого растения - арабидопсиса. Круг объектов непрерывно расширяется, в частности, весьма активно расшифровывается геном риса - одной из основных продовольственных культур. У человека уже известно строение ДНК двух самых маленьких хромосом - 21-й и 22-й. Все это вместе создало основы сравнительной геномики.

Сравнение у разных видов фрагментов белков, выполняющих одну и ту же функцию в белковом синтезе, позволило выявить общий структурный мотив, а последующее изменение структуры этого мотива путем так называемого «направленного мутагенеза» - его функциональную важность. Из суммы данных структурной и сравнительной геномики можно делать далеко идущие выводы о молекулярной эволюции организмов, что составляет предмет еще одного раздела геномики - эволюционной.

Парадоксальность ситуации, складывающейся сейчас в геномике, состоит в том, что объем информации, которым располагают исследователи, намного больше того, что можно осмыслить, проанализировать и использовать в экспериментальной работе. Поэтому развитие новых математических методов вычислительной техники, программного обеспечения, совершенствование способов описания и хранения геномной информации становятся чрезвычайно актуальными. Этими проблемами активно занимается биоинформатика, включающая в себя и геноинформатику.

Бноннформатнка анализирует ситуацию как бы на четырех тесно связанных друг с другом уровнях. Первый - это генетический текст, то есть нуклеотидная последовательность ДНК, второй - тоже текст, но сначала в форме РНК, а затем в форме аминокислотной последовательности белка; следующий, третий уровень - пространственная структура белка. Как известно, она целиком определяется первичной структурой, а экспериментально устанавливается с помощью рентгеноструктурного анализа кристаллов белков или с помощью ядерного магнитного резонанса в растворе для белков небольшого размера.

Хотя методы предсказания трехмерной структуры белка (вторичной и третичной структуры) по его аминокислотной последовательности все еще крайне неточны, тем не менее благодаря тому, что в «банках данных» уже есть информация о трехмерной структуре сотен белков, можно на ее основе, используя сведения о нуклеотидной и аминокислотной последовательностях неизвестного белка, предсказывать во многих случаях и трехмерную структуру с достаточной точностью.

Наконец, последний, четвертый уровень - это предсказание функции белка на основании знания его первичной структуры и предсказанной трехмерной структуры. Таким образом, структурная и сравнительная геномика через биоинформатику как бы переходят в новый раздел геномики, который обычно называют функциональной геномикой.

Главная задача функциональной геномики - выяснение биологических функций генных продуктов. Основную их массу составляют белки, на долю РНК приходятся всего лишь десятки генов, хотя, разумеется, многие виды РНК играют ключевую роль в клетке при передаче и реализации генетической информации. Функциональная геномика стремится сначала предсказать функцию тех или иных белков с помощью "сухой" биохимии, то есть компьютерного анализа, и только затем переходит к "мокрой" биохимии, то есть к экспериментальной проверке в пробирке предсказанной функции.

Совершенно очевидно, что близящееся завершение эры структурной геномики человека и многих других организмов означает перенос фокуса внимания исследователей на биоинформатику и функциональную геномику. Ни у кого нет сомнений, что первое десятилетие XXI в. будет эрой функциональной геномики и биоинформатики. Если в геномную эру (1989-1999) ключевым словом было "ДНК", то скоро ключевым словом, безусловно, станет "белок". Такова диалектика новой биологии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]