- •1.Числовая последовательности и ее предел.
- •2.Способы задания функции.
- •1. Аналитический способ
- •2. Табличный способ
- •3. Графический способ
- •3.Предел функции. Односторонние пределы.
- •Левый и правый пределы функции
- •4.Первый замечательный предел.
- •7.Производная. Геометрический и механический смысл производной
- •8.Таблица производных и правила дифференцирования
- •9.Возрастание и убывание функции
- •Точки экстремума, экстремумы функции.
- •Достаточные условия возрастания и убывания функции.
- •Достаточные условия экстремума функции.
- •Первое достаточное условие экстремума.
- •Второй признак экстремума функции.
- •Третье достаточное условие экстремума функции.
- •10. Экстремумы функции Определение экстремума
- •Точки экстремума
- •Задачи на нахождения экстремума функции
- •11.Производные высших порядков. Формула Тейлора
- •Формула Тейлора
- •Определённый интеграл
- •13. Геометрический смысл определенного интеграла.
- •14.Определение числового ряда. Сходимость ряда.
- •15.Признак сходимости Даламбера и Коши
- •17.Понятие суммы степенного ряда. Ряд Тейлора
- •Определение
- •Формула Тейлора для большого числа переменных
- •19.Частная производная
- •Обозначение
- •Геометрическая интерпретация
- •Примеры
- •21.Дифференциальное уравнение
- •Обыкновенные дифференциальные уравнения
- •Порядок дифференциального уравнения
- •Простейшие дифференциальные уравнения первого порядка
- •Дифференциальные уравнения в частных производных
- •Линейные и нелинейные дифференциальные уравнения
- •Примеры
Примеры
—
однородное
дифференциальное уравнение второго
порядка с постоянными коэффициентами.
Решением является семейство функций
,
где
и
—
произвольные константы, которые для
конкретного решения определяются из
задаваемых отдельно начальных условий.
Это уравнение, в частности, описывает
движение гармонического осциллятора
с циклической частотой 3.
Второй закон Ньютона можно записать в форме дифференциального уравнения
где m —
масса тела, x —
его координата, F(x, t) —
сила, действующая на тело с координатой x в
момент времени t.
Его решением является траектория
движения тела под действием указанной
силы.
Дифференциальное уравнение Бесселя — обыкновенное линейное однородное уравнение второго порядка с переменными коэффициентами:
Его
решениями являются функции
Бесселя.
Пример неоднородного нелинейного обыкновенного дифференциального уравнения 1-го порядка:

В следующей группе примеров неизвестная функция u зависит от двух переменных x и t или x и y.
Однородное линейное дифференциальное уравнение в частных производных первого порядка:
![]()
Одномерное волновое уравнение — однородное линейное уравнение в частных производных гиперболического типа второго порядка с постоянными коэффициентами, описывает колебание струны, если
—
отклонение струны в точке с координатой x в
момент времени t,
а параметр a задаёт
свойства струны:
![]()
Уравнение Лапласа в двумерном пространстве — однородное линейное дифференциальное уравнение в частных производных второго порядка эллиптического типа с постоянными коэффициентами, возникающее во многих физических задачах механики, теплопроводности, электростатики, гидравлики:
![]()
Уравнение Кортевега — де Фриза, нелинейное дифференциальное уравнение в частных производных третьего порядка, описывающее стационарные нелинейные волны, в том числе солитоны:
![]()
