Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lecture Notes on Solving Large Scale Eigenvalue Problems.pdf
Скачиваний:
49
Добавлен:
22.03.2016
Размер:
2.32 Mб
Скачать

1.7. CAVITY RESONANCES IN PARTICLE ACCELERATORS

21

16

 

 

 

 

 

16

 

 

 

 

 

14

 

 

 

 

 

14

 

 

 

 

 

12

 

 

 

 

 

12

 

 

 

 

 

10

 

 

 

 

 

10

 

 

 

 

 

8

 

 

 

 

 

8

 

 

 

 

 

6

 

 

 

 

 

6

 

 

 

 

 

4

 

 

 

 

 

4

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

0

 

 

 

 

 

0

 

 

 

 

 

−2

 

 

 

 

 

−2

 

 

 

 

 

0

5

10

15

20

25

0

5

10

15

20

25

16

14

12

10

8

6

4

2

0

−2

0

5

10

15

20

25

Figure 1.9: Three meshes for the car length cut

The fourth eigenfunction of the acoustic vibration problem is displayed in Fig. 1.10. The physical meaning of the function value is the di erence of the pressure at a given location to the normal pressure. Large amplitudes thus means that the corresponding noise is very much noticable.

1.7Cavity resonances in particle accelerators

The Maxwell equations in vacuum are given by

 

curl E(x, t) = −

B

 

 

 

(x, t),

(Faraday’s law)

∂t

curl H(x, t) =

D

(x, t) + j(x, t),

(Maxwell–Amp`ere law)

 

 

∂t

 

div D(x, t) = ρ(x, t),

(Gauss’s law)

div B(x, t) = 0.

(Gauss’s law – magnetic)

where E is the electric field intensity, D is the electric flux density, H is the magnetic field intensity, B is the magnetic flux density, j is the electric current density, and ρ is the electric charge density. Often the “optical” problem is analyzed, i.e. the situation when the cavity is not driven (cold mode), hence j and ρ are assumed to vanish.

22

CHAPTER 1. INTRODUCTION

0.05

0

−0.05

−0.1

Figure 1.10: Fourth eigenmode of the acoustic vibration problem

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]