Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lecture Notes on Solving Large Scale Eigenvalue Problems.pdf
Скачиваний:
44
Добавлен:
22.03.2016
Размер:
2.32 Mб
Скачать

Lecture Notes on

Solving Large Scale Eigenvalue Problems

Prof. Dr. Peter Arbenz

D-INFK

ETH Z¨urich

Email: ARBENZ@INF.ETHZ.CH

with modifications by

Prof. Dr. Daniel Kressner

D-MATH ETH Z¨urich

Email: KRESSNER@MATH.ETHZ.CH

Spring semester 2012

ii

Contents

1 Introduction

1

1.1What makes eigenvalues interesting? . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Example 1: The vibrating string . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2The method of separation of variables . . . . . . . . . . . . . . . . . 5

1.3Numerical methods for solving 1-dimensional problems . . . . . . . . . . . . 6

1.3.1Finite di erences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2The finite element method . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Global functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4A numerical comparison . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Example 2: The heat equation . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5Example 3: The wave equation . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 The 2D Laplace eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1The finite di erence method . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.2 The finite element method (FEM) . . . . . . . . . . . . . . . . . . . 16

1.6.3A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Cavity resonances in particle accelerators . . . . . . . . . . . . . . . . . . . 21

1.8Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8.1The graph Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.8.2Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8.3Normalized graph Laplacians . . . . . . . . . . . . . . . . . . . . . . 27

1.9Other sources of eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Basics

29

2.1Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3Similarity transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4Schur decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5The real Schur decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Normal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7Hermitian matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8Cholesky factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9The singular value decomposition (SVD) . . . . . . . . . . . . . . . . . . . . 42

2.10

Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

2.11

Angles between vectors and subspaces . . . . . . . . . . . . . . . . . . . . .

45

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

iii

iv

CONTENTS

3 The QR Algorithm

51

3.1The basic QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 The Hessenberg QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1A numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3The Householder reduction to Hessenberg form . . . . . . . . . . . . . . . . 59

3.3.1Householder reflectors . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Reduction to Hessenberg form . . . . . . . . . . . . . . . . . . . . . 59

3.4Improving the convergence of the QR algorithm . . . . . . . . . . . . . . . . 61

3.4.1A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 QR algorithm with shifts . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5The double shift QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.2The complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 The symmetric tridiagonal QR algorithm . . . . . . . . . . . . . . . . . . . 72

3.6.1Reduction to tridiagonal form . . . . . . . . . . . . . . . . . . . . . . 72

3.6.2The tridiagonal QR algorithm . . . . . . . . . . . . . . . . . . . . . . 73

3.7Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

4 Cuppen’s Divide and Conquer Algorithm

77

4.1The divide and conquer idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2Partitioning the tridiagonal matrix . . . . . . . . . . . . . . . . . . . . . . . 78

4.3Solving the small systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4

Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

79

 

4.4.1 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . .

80

4.5

The eigenvalue problem for D + ρvvT . . . . . . . . . . . . . . . . . . . . .

81

4.6Solving the secular equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7A first algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7.1A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8The algorithm of Gu and Eisenstat . . . . . . . . . . . . . . . . . . . . . . . 89

4.8.1A numerical example [continued] . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

93

5 LAPACK and the BLAS

95

5.1

LAPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

5.2

BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

96

5.2.1 Typical performance numbers for the BLAS . . . . . . . . . . . . . . 97

5.3Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 LAPACK solvers for the symmetric eigenproblems . . . . . . . . . . . . . . 100

5.5Generalized Symmetric Definite Eigenproblems (GSEP) . . . . . . . . . . . 102

5.6An example of a LAPACK routines . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CONTENTS

v

6 Vector iteration (power method)

111

6.1Simple vector iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 The symmetric case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5Inverse vector iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6The generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . 125

6.7Computing higher eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.8 Rayleigh quotient iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8.1A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 129

7 Simultaneous vector or subspace iterations

131

7.1Basic subspace iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Convergence of basic subspace iteration . . . . . . . . . . . . . . . . . . . . 131

7.3Accelerating subspace iteration . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4Relation between subspace iteration and QR algorithm . . . . . . . . . . . . 141

7.5 Addendum .

. . .

.

. . .

.

. . .

. . .

.

. . .

.

. . .

. . . .

.

. . .

. . . .

. 144

Bibliography . . .

. . .

.

. . .

.

. . .

. . .

.

. . .

.

. . .

. . . .

.

. . .

. . . .

. 144

8 Krylov subspaces

 

 

 

 

 

 

 

 

 

 

 

 

 

 

145

8.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2

Definition and basic properties . . . . . . . .

. . . .

. . . .

. . . .

. .

. .

.

146

8.3

Polynomial representation of Krylov subspaces

. . .

. . . .

. . . .

. .

. .

.

147

8.4Error bounds of Saad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . 153

9 Arnoldi and Lanczos algorithms

155

9.1An orthonormal basis for the Krylov space Kj (x) . . . . . . . . . . . . . . . 155

9.2

Arnoldi algorithm with explicit restarts

. . .

. . . .

. . . .

. . . .

. . . .

.

157

9.3

The Lanczos basis . . . . . . . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

158

9.4The Lanczos process as an iterative method . . . . . . . . . . . . . . . . . . 160

9.5An error analysis of the unmodified Lanczos algorithm . . . . . . . . . . . . 167

9.6 Partial reorthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.7Block Lanczos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.8

External selective reorthogonalization . . . .

. . . . . . . . . . . . . . . . . 175

Bibliography . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 176

10 Restarting Arnoldi and Lanczos algorithms

177

10.1

The m-step Arnoldi iteration . . . . . . . . .

. . . . . . . . . . . . . . . . . 177

10.2

Implicit restart . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 178

10.3

Convergence criterion . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 180

10.4The generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . 181

10.5A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.6Another numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.7The Lanczos algorithm with thick restarts . . . . . . . . . . . . . . . . . . . 192

10.8Krylov–Schur algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.9 The rational Krylov space method

. .

.

. . .

. . . .

. . . .

. . . .

. . . .

.

196

Bibliography . . . . . . . . . . . . . .

. . .

.

. . .

. . . .

. . . .

. . . .

. . . .

.

197

vi

 

 

CONTENTS

11 The Jacobi-Davidson Method

199

11.1

The Davidson algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11.2

The Jacobi orthogonal component correction

. . . . . . . . . . . . . . . . . 200

 

11.2.1

Restarts . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 203

 

11.2.2

The computation of several eigenvalues

. . . . . . . . . . . . . . . . 203

 

11.2.3

Spectral shifts . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 204

11.3

The generalized Hermitian eigenvalue problem

. . . . . . . . . . . . . . . . 206

11.4A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.5The Jacobi–Davidson algorithm for interior eigenvalues . . . . . . . . . . . . 210

11.6Harmonic Ritz values and vectors . . . . . . . . . . . . . . . . . . . . . . . . 211

11.7 Refined Ritz vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

11.8The generalized Schur decomposition . . . . . . . . . . . . . . . . . . . . . . 215

11.9JDQZ: Computing a partial QZ decomposition . . . . . . . . . . . . . . . . 215

11.9.1

Restart . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 217

11.9.2

Deflation . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 217

11.9.3

Algorithm . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 218

11.10Jacobi-Davidson for nonlinear eigenvalue problems

. . . . . . . . . . . . . . 218

Bibliography . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 221

12 Rayleigh quotient and trace minimization

223

12.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

12.2The method of steepest descent . . . . . . . . . . . . . . . . . . . . . . . . . 224

12.3The conjugate gradient algorithm . . . . . . . . . . . . . . . . . . . . . . . . 225

12.4Locally optimal PCG (LOPCG) . . . . . . . . . . . . . . . . . . . . . . . . . 229

12.5The block Rayleigh quotient minimization algorithm (BRQMIN) . . . . . . 232

12.6The locally-optimal block preconditioned conjugate gradient method (LOBPCG)232

12.7A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

12.8Trace minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Chapter 1

Introduction

Before we start with the subject of this notes we want to show how one actually arrives at large eigenvalue problems in practice. In the following, we restrict ourselves to problems from physics [4, 10, 7] and computer science.

1.1What makes eigenvalues interesting?

In physics, eigenvalues are usually connected to vibrations. Objects like violin strings, drums, bridges, sky scrapers can swing. They do this at certain frequencies. And in some situations they swing so much that they are destroyed. On November 7, 1940, the Tacoma narrows bridge collapsed, less than half a year after its opening. Strong winds excited the bridge so much that the platform in reinforced concrete fell into pieces. A few years ago the London millennium footbridge started wobbling in a way that it had to be closed. The wobbling had been excited by the pedestrians passing the bridge. These are prominent examples of vibrating structures.

But eigenvalues appear in many other places. Electric fields in cyclotrones, a special form of particle accelerators, have to oscillate in a precise manner, in order to accelerate the charged particles that circle around its center. The solutions of the Schr¨odinger equation from quantum physics and quantum chemistry have solutions that correspond to vibrations of the, say, molecule it models. The eigenvalues correspond to energy levels that molecule can occupy.

Many characteristic quantities in science are eigenvalues:

decay factors,

frequencies,

norms of operators (or matrices),

singular values,

condition numbers.

In the sequel we give a number of examples that show why computing eigenvalues is important. At the same time we introduce some notation.

1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]