
- •1 Introduction
- •1.1 What makes eigenvalues interesting?
- •1.2 Example 1: The vibrating string
- •1.2.1 Problem setting
- •1.2.2 The method of separation of variables
- •1.3.3 Global functions
- •1.3.4 A numerical comparison
- •1.4 Example 2: The heat equation
- •1.5 Example 3: The wave equation
- •1.6 The 2D Laplace eigenvalue problem
- •1.6.3 A numerical example
- •1.7 Cavity resonances in particle accelerators
- •1.8 Spectral clustering
- •1.8.1 The graph Laplacian
- •1.8.2 Spectral clustering
- •1.8.3 Normalized graph Laplacians
- •1.9 Other sources of eigenvalue problems
- •Bibliography
- •2 Basics
- •2.1 Notation
- •2.2 Statement of the problem
- •2.3 Similarity transformations
- •2.4 Schur decomposition
- •2.5 The real Schur decomposition
- •2.6 Normal matrices
- •2.7 Hermitian matrices
- •2.8 Cholesky factorization
- •2.9 The singular value decomposition (SVD)
- •2.10 Projections
- •2.11 Angles between vectors and subspaces
- •Bibliography
- •3 The QR Algorithm
- •3.1 The basic QR algorithm
- •3.1.1 Numerical experiments
- •3.2 The Hessenberg QR algorithm
- •3.2.1 A numerical experiment
- •3.2.2 Complexity
- •3.3 The Householder reduction to Hessenberg form
- •3.3.2 Reduction to Hessenberg form
- •3.4 Improving the convergence of the QR algorithm
- •3.4.1 A numerical example
- •3.4.2 QR algorithm with shifts
- •3.4.3 A numerical example
- •3.5 The double shift QR algorithm
- •3.5.1 A numerical example
- •3.5.2 The complexity
- •3.6 The symmetric tridiagonal QR algorithm
- •3.6.1 Reduction to tridiagonal form
- •3.6.2 The tridiagonal QR algorithm
- •3.7 Research
- •3.8 Summary
- •Bibliography
- •4.1 The divide and conquer idea
- •4.2 Partitioning the tridiagonal matrix
- •4.3 Solving the small systems
- •4.4 Deflation
- •4.4.1 Numerical examples
- •4.6 Solving the secular equation
- •4.7 A first algorithm
- •4.7.1 A numerical example
- •4.8 The algorithm of Gu and Eisenstat
- •4.8.1 A numerical example [continued]
- •Bibliography
- •5 LAPACK and the BLAS
- •5.1 LAPACK
- •5.2 BLAS
- •5.2.1 Typical performance numbers for the BLAS
- •5.3 Blocking
- •5.4 LAPACK solvers for the symmetric eigenproblems
- •5.6 An example of a LAPACK routines
- •Bibliography
- •6 Vector iteration (power method)
- •6.1 Simple vector iteration
- •6.2 Convergence analysis
- •6.3 A numerical example
- •6.4 The symmetric case
- •6.5 Inverse vector iteration
- •6.6 The generalized eigenvalue problem
- •6.7 Computing higher eigenvalues
- •6.8 Rayleigh quotient iteration
- •6.8.1 A numerical example
- •Bibliography
- •7 Simultaneous vector or subspace iterations
- •7.1 Basic subspace iteration
- •7.2 Convergence of basic subspace iteration
- •7.3 Accelerating subspace iteration
- •7.4 Relation between subspace iteration and QR algorithm
- •7.5 Addendum
- •Bibliography
- •8 Krylov subspaces
- •8.1 Introduction
- •8.3 Polynomial representation of Krylov subspaces
- •8.4 Error bounds of Saad
- •Bibliography
- •9 Arnoldi and Lanczos algorithms
- •9.2 Arnoldi algorithm with explicit restarts
- •9.3 The Lanczos basis
- •9.4 The Lanczos process as an iterative method
- •9.5 An error analysis of the unmodified Lanczos algorithm
- •9.6 Partial reorthogonalization
- •9.7 Block Lanczos
- •9.8 External selective reorthogonalization
- •Bibliography
- •10 Restarting Arnoldi and Lanczos algorithms
- •10.2 Implicit restart
- •10.3 Convergence criterion
- •10.4 The generalized eigenvalue problem
- •10.5 A numerical example
- •10.6 Another numerical example
- •10.7 The Lanczos algorithm with thick restarts
- •10.8 Krylov–Schur algorithm
- •10.9 The rational Krylov space method
- •Bibliography
- •11 The Jacobi-Davidson Method
- •11.1 The Davidson algorithm
- •11.2 The Jacobi orthogonal component correction
- •11.2.1 Restarts
- •11.2.2 The computation of several eigenvalues
- •11.2.3 Spectral shifts
- •11.3 The generalized Hermitian eigenvalue problem
- •11.4 A numerical example
- •11.6 Harmonic Ritz values and vectors
- •11.7 Refined Ritz vectors
- •11.8 The generalized Schur decomposition
- •11.9.1 Restart
- •11.9.3 Algorithm
- •Bibliography
- •12 Rayleigh quotient and trace minimization
- •12.1 Introduction
- •12.2 The method of steepest descent
- •12.3 The conjugate gradient algorithm
- •12.4 Locally optimal PCG (LOPCG)
- •12.5 The block Rayleigh quotient minimization algorithm (BRQMIN)
- •12.7 A numerical example
- •12.8 Trace minimization
- •Bibliography

176 |
CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS |
Bibliography
[1]W. E. ARNOLDI, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quarterly of Applied Mathematics, 9 (1951), pp. 17–29.
[2]J. K. CULLUM AND R. A. WILLOUGHBY, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, vol. 1: Theory, Birkh¨auser, Boston, 1985.
[3]G. H. GOLUB AND J. H. WELSCH, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969), pp. 221–230.
[4]R. GRIMES, J. G. LEWIS, AND H. SIMON, A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 228–272.
[5]N. KRYLOV AND N. BOGOLIUBOV, Sur le calcul des racines de la transcendante de
Fredholm les plus voisines d’une nombre donn´e par les m´ethodes des moindres carres et de l’algorithme variationel, Izv. Akad. Naik SSSR, Leningrad, (1929), pp. 471–488.
[6]C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear di erential and integral operators, J. Res. Nat. Bureau Standards, Sec. B, 45 (1950),
pp.255–282.
[7]B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cli s, NJ, 1980. (Republished by SIAM, Philadelphia, 1998.).
[8]H. SIMON, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods, Linear Algebra Appl., 61 (1984), pp. 101–132.
[9], The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984),
pp.115–142.