Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lecture Notes on Solving Large Scale Eigenvalue Problems.pdf
Скачиваний:
49
Добавлен:
22.03.2016
Размер:
2.32 Mб
Скачать

BIBLIOGRAPHY

49

Let x S1 + S2. Then x = 1 + 2 with i Si. We write

x = 1 + Q1Q12 + (In − Q1Q1)2 =: q1 + q2

with q1 = Q1a and q2 = Q2b = (In − Q1Q1)Q2b. Then

k(Q1Q1 − Q2Q2)xk2 = k(Q1Q1 − Q2Q2)(Q1a + Q2b)k2

=kQ1a + Q2Q2Q1a + Q2bk2

=k(In − Q2Q2)Q1a + Q2bk2

=a Q1(In − Q2Q2)Q1a

+2Re(a Q1(In − Q2Q2)Q2b) + b Q2Q2b

sin2 ϑ = max a Q

(I

n

Q

Q )Q

a,

 

 

a

 

=1

1

 

 

2

 

2

1

 

 

 

k k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= max a Q

(Q

Q

Q

Q )Q

1

a,

a

 

=1

1

 

1

 

1

2

2

 

 

k k

 

 

x (Q1Q

Q2Q )x

 

 

 

 

 

 

 

 

= max

 

 

 

 

 

1

 

2

.

 

 

 

 

 

 

x x

 

 

x

S1

0

}

 

 

 

 

 

 

 

 

 

 

 

\{

 

 

 

 

 

 

 

 

 

 

 

 

Thus, sin ϑ is the maximum of the Rayleigh quotient R(x) corresponding to Q1Q1 −Q2Q2, that is the largest eigenvalue of Q1Q1 −Q2Q2. As Q1Q1 −Q2Q2 is symmetric and positive semi-definite, its largest eigenvalue equals its norm,

Lemma 2.40 sin (S1, S2) = kQ2Q2 − Q1Q1k

Lemma 2.41 (S1, S2) = (S1 , S2 ).

Proof. Because

kQ2Q2 − Q1Q1k = k(I − Q2Q2) − (I − Q1Q1)k

the claim immediately follows from Lemma 2.40.

Bibliography

[1]E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. D. CROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV,

AND D. SORENSEN, LAPACK Users’ Guide - Release 2.0,

SIAM,

Philadel-

phia, PA, 1994.

(Software and guide are available from

Netlib

at URL

http://www.netlib.org/lapack/).

 

 

[2]G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press, Baltimore, MD, 2nd ed., 1989.

[3]R. ZURMUHL¨ , Matrizen und ihre technischen Anwendungen, Springer, Berlin, 4th ed., 1964.

50

CHAPTER 2. BASICS

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]