
- •А.В. Лихачев
- •Конспект лекций
- •По дисциплине
- •«Автоматика»
- •Предисловие
- •Введение Исторический путь развития автоматики
- •Раздел 1. Элементы автоматики
- •Тема 1 Основные элементы автоматики
- •1.1 Основные понятия и определения
- •1.2 Элементы автоматических систем
- •1.3 Основные характеристики элементов систем автоматики
- •1.4 Основные элементы систем автоматики
- •1. Датчики
- •1.5 Классификация элементов автоматики
- •Раздел II Первичные преобразователи физических величин Тема 2 Классификация и основные характеристики первичных преобразователей
- •2.1. Общие сведения о преобразователях
- •2.2. Классификация измерительных преобразователей
- •2.3. Статические и динамические характеристики измерительных преобразователей
- •2.4. Структурные схемы измерительных преобразователей
- •2.5. Унификация и стандартизация измерительных преобразователей
- •Тема 3 Первичные преобразователи с электрическими выходными сигналами.
- •3.1. Основные понятия.
- •3.2. Электроконтактные датчики
- •3.3. Потенциометрические датчики
- •3.4. Тензометрические датчики
- •3.5. Индуктивные датчики
- •3.6. Емкостные датчики
- •3.7. Пьезоэлектрические датчики
- •3.8. Терморезисторы
- •3.9. Термоэлектрические датчики
- •Раздел III Усилительные элементы систем автоматики Тема 4 Классификация и общие сведения об усилителях систем автоматики
- •4.1. Классификация усилителей
- •4.2. Характеристики усилителей
- •4.3. Обратные связи в усилителях
- •Тема 5. Полупроводниковые усилители
- •5.1. Усилители на биполярном транзисторе
- •5.2. Усилитель напряжения на полевом транзисторе
- •5.3. Операционные усилители
- •Операционные усилители без преобразования сигнала
- •5.4. Электрометрические и измерительные усилители
- •5.5. Многокаскадные усилители
- •5.6. Усилители мощности
- •5.7. Импульсные усилители
- •Раздел IV Реле Тема 6 Электрические реле
- •6.1. Электромагнитные реле
- •Электромагнитные реле постоянного тока
- •Электромагнитные реле переменного тока
- •6.2. Поляризованные электромагнитные реле
- •6.3. Реле времени
- •6.4. Тепловые реле
- •Раздел V Исполнительные элементы систем автоматики Тема 7 Классификация и общие характеристики исполнительных элементов
- •7.1. Классификация исполнительных элементов
- •7.2. Общие характеристики исполнительных элементов
- •Тема 8 Исполнительные электромагнитные устройства
- •8.1. Классификация электромагнитов
- •8.2. Поляризованные электромагниты
- •Тема 9 Электромагнитные муфты
- •9.1. Классификация муфт
- •9.2. Фрикционные муфты
- •9.3. Муфты скольжения
- •Тема 10 Исполнительные двигатели постоянного тока
- •10.1. Общие сведения
- •10.2. Исполнительные двигатели с обычным и гладким беспазовым якорями. Бесконтактные двигатели Исполнительные двигатели с обычным якорем и электромагнитным возбуждением
- •Исполнительные двигатели с обычным якорем и возбуждением от постоянных магнитов
- •Исполнительные двигатели с гладким беспазовым якорем
- •Бесконтактные исполнительные двигатели
- •10.3. Малоинерционные двигатели постоянного тока
- •Малоинерционные двигатели с печатной обмоткой якоря
- •Малоинерционные двигатели с обычной обмоткой якоря
- •Тема 11 Исполнительные двигатели переменного тока
- •11.1. Основные типы двигателей. Асинхронные микродвигатели
- •11.2. Асинхронные двигатели с полым немагнитным ротором
- •11.3. Асинхронные двигатели с короткозамкнутым ротором
- •11.4 Синхронные микродвигатели
- •11.5. Синхронные реактивные микродвигатели
- •Тема 12 Шаговые и моментные двигатели
- •12.1. Принцип действия шаговых двигателей
- •12.2. Шаговые двигатели с пассивным ротором
- •12.3. Шаговые двигатели с активным ротором
- •12.4. Индукторные шаговые двигатели
- •12.5. Шаговые реактивные двигатели
- •Раздел VI. Объекты регулирования
- •Тема 13 Классификация и основные параметры объекта регулирования
- •13.1 Классификация объектов регулирования
- •13.2 Параметры объектов регулирования
- •13.3 Определение основных свойств объектов регулирования
- •Раздел VII. Классификация систем автоматики
- •Тема 14. Системы автоматики
- •14.1 Общая классификация систем автоматики
- •14.2 Системы автоматического контроля (сак).
- •Типовая схема устройства централизованного контроля
- •14.3 Системы автоматической блокировки (саб)
- •14.4 Системы автоматической защиты (саз)
- •14.5 Системы автоматической сигнализации (сас).
- •14.6 Системы автоматического регулирования (сар)
- •14.7 Системы автоматического управления (сау)
- •Раздел VIII. Динамические звенья
- •Тема 15 Типовые динамические звенья
- •15.1 Основные понятия и определения
- •15.2. Параметры и характеристики динамических звеньев.
- •1) Лачх - логарифмическая ачх.
- •15. 3 Соединения динамических звеньев
- •15.4 Устойчивость системы автоматики.
- •15.4.1 Корневой критерий.
- •15.4.2 Критерий Стодолы.
- •15.4.3 Критерий Гурвица.
- •15.4.4 Критерий Михайлова.
- •15.4.5 Критерий Найквиста.
- •15.5. Показатели качества.
- •15.5.1 Прямые показатели качества.
- •15.5.2 Корневые показатели качества.
- •15.5.3 Частотные показатели качества.
- •15.6. Настройка регуляторов.
- •15.6.1. Типы регуляторов.
- •Раздел IX Автоматика в энергетическом хозяйстве
- •Тема 16. Автоматические системы в энергетическом хозяйстве
- •16.1 Автоматизация систем вентиляции
- •16.2 Автоматическая система кондиционирования воздуха
- •16.3 Схема автоматического повторного включения систем электроснабжения
- •16.4 Схемы автоматического включения резерва (авр)
- •Раздел X. Технические средства автоматики и телемеханики
- •17 Основные сведения о технических средствах Государственной системы промышленных приборов и средств автоматизации (гсп).
- •17.1 Основные понятия гсп.
- •17.2 Измерительные преобразователи.
- •17.3 Исполнительные механизмы и регулирующие органы.
- •17.4. Бионические аспекты элементов автоматики
- •Раздел I. Элементы автоматики_________________________________________7
- •Раздел III Усилительные элементы систем автоматики_____________________52
- •Тема 4 Классификация и общие сведения об усилителях систем автоматики
- •Тема 5. Полупроводниковые усилители
- •Раздел IV Реле_______________________________________________________70
- •Раздел VIII. Динамические звенья _____________________________________137
- •Тема 15. Типовые динамические звенья
- •Раздел IX. Автоматика в энергетическом хозяйстве_______________________153
- •Тема 16. Автоматические системы в энергетическом хозяйстве
- •Раздел X. Технические средства автоматики и телемеханики_______________148
- •Тема 17 Основные сведения о технических средствах Государственной системы промышленных приборов и средств автоматизации (гсп).
Раздел VIII. Динамические звенья
Тема 15 Типовые динамические звенья
15.1 Основные понятия и определения
Любую систему автоматики можно рассматривать с двух точек зрения:
качественной;
количественной.
При качественном анализе автоматической системы мы рассматриваем ее как совокупность взаимодействующих между собой функциональных элементов (датчики, усилители, задающее устройство, объект регулирования и т.п.), которые различаются между собой по конструкции и по принципу действия.
Для количественного анализа процессов, происходящих в системе (т.е. математического ее описания), систему разделяют не на функциональные, а на динамические элементы – звенья.
Динамическим звеном называется часть системы, описываемая дифференциальным уравнением определенного вида. Например, зубчатая передача, делитель напряжения – имеют одинаковое математическое описание (формулу работы). Динамическим звеном может быть функциональный элемент, его часть, несколько функциональных элементов или даже вся система автоматики в целом.
В зависимости от характера протекания переходного процесса, различают следующие типовые динамические звенья:
усилительное;
дифференцирующее;
интегрирующее;
апериодическое;
колебательное
Усилительным (безинерционным, пропорциональным) звеном называют такое динамическое звено, у которого выходная величина в каждый момент времени пропорциональная входной величине, т.е. выходная величина воспроизводит без искажений и запаздываний входную величину. (Примеры усилительного звена: потенциометр, система рычагов, усилители, зубчатая передача и т.п.)
Дифференцирующим звеном называется такое звено, в котором выходная величина пропорциональна производной во времени входной величине, т.е. выходная величина пропорциональна скорости изменения входной величине. (Примеры дифференцирующего звена: тахометр, спидометр, цепи RC и RL, трансформаторы) .
Интегрирующее звено – такое звено, у которого выходная величина пропорциональна интегралу во времени входной величины. После прекращения действия сигнала на входе, выходной сигнал остается на том же уровне, на котором он был в момент исчезновения входного сигнала, т.е. это звено обладает памятью (Примеры интегрирующего звена: электродвигатель постоянного тока с независимым возбуждением, конденсатор, поршневой гидродвигатель и т.п.)
Апериодическое (инерционное) – звено, в котором при подаче на вход скачкообразного сигнала , выходная величина апериодически (по экспоненте) стремиться к новому установившемуся значению. Выходной сигнал всегда запаздывает по отношению к входному (Примеры апериодического звена: цепи LR и LC, термопары, термостаты, магнитные усилители).
Колебательное звено – звено, у которого при ступенчатом (скачкообразном) изменении входной величины, выходная величина стремиться к новому установившемуся значению, совершая при этом затухающие и незатухающие колебания (Примеры: контур RLC, масса, подвешенная на пружине, маятник, поплавковый уровнемер).
У каждого динамического звена может быть только одна входная и одна выходная величина. Причем выходная величина не должна оказывать на это звено обратного влияния, т.е. при соединении звеньев любое воздействие распространяется только от входа к выходу. Это свойство динамических звеньев называется свойством однонаправленности.
Кроме того, подключение каждого последующего звена не должно влиять на процессы, происходящие в предыдущем звене. Это свойство динамического звена называется независимостью звеньев.
Любое динамическое звено математически может быть изображено следующим образом:
Хвх
(x)
Хвых
(y)
Рисунок 15.1. Математическое изображение динамического звена
где W(p) – передаточная функция – отношение изменения во времени сигнала на выходе звена Хвых(t) к изменению сигнала на входе того же звена Хвх(t) при нулевом начальном условии.
Для суммирующих элементов используют специальное обозначение – круг, разбитый на сектора. Если сектор залит чёрным цветом, поступающий в него сигнал вычитается, а не складывается с другими. Разветвление сигнала обозначается точкой, как и в радиотехнике.
Рисунок 15.2.Геометрическое изображение суммирующего элемента
Математически
звенья описываются линейными
дифференциальными уравнениями первого
или второго порядка:
(15.1)
(15.2)
где d – дифференциал;
Для удобства расчетов введем оператор дифференцирования (D) или
Тогда
передаточная функция звена будет иметь
вид:
(15.3)
Это выражение и вписывается в прямоугольник для каждого конкретного звена.
Например, если звено описывается дифференциальным уравнением
T(dXвых/dt) +Xвых = K Xвх, (15.4)
а оператор p = d/dt, то в операторной форме это уравнение будет иметь вид:
(Tp + 1) Xвых(p) = KXвх (p); (15.5)
Передаточная функция такого звена будет иметь вид:
W(p) = (Tp + 1) / K. (15.6)