
- •Введение
- •Тема 1. Геолого-физическая характеристика нефтяных и газовых залежей
- •1.1 Общие понятия о нефти и природном газе с точки зрения их генезиса, физики и химии.
- •1.2 Нефть и газ как сложные многокомпонентные системы углеводородов (ув) в различных термобарических условиях. Фазовые состояния и превращения газонефтяных систем.
- •1.3 Общие сведения об осадочно-миграционной теории органического происхождения ув и образования месторождений нефти и природного газа. Понятие о геологических ловушках для ув, типы ловушек.
- •1.4 Минералы и горные породы. Классификация горных пород. Породы-коллекторы нефти и газа (их основные типы и характеристики).
- •1.4.Краткая стратиграфическая характеристика Припятского прогиба.
- •Тема 2 Залежи и месторождения углеводородов
- •2.1 Залежи нефти и природного газа как единичные скопления ув в геологических ловушках. Месторождения нефти и газа.
- •Классификация залежей углеводородов
- •2.3 Пластовые воды залежей ув; расположение пластовых вод относительно нефтегазоносной части залежи.
- •2.4 Запасы нефти и природного газа. Категории запасов. Подсчет запасов нефти и газа объемным методом.
- •Объемный метод подсчета запасов нефти
- •Объемный метод подсчета запасов газа
- •Тема 3. Пластовое давление в залежах ув
- •1 Газ; 2 нефть; 3 вода; 4 заводненная зона пласта; 5 точка замера давления в скважине; h расстояние от точки замера до условной плоскости
- •Тема 4. Физические параметры пластовых жидкостей и учет их изменения при разработке залежей нефти
- •4.2 Физические параметры пластовых вод.
- •Тема 5. Условия эксплуатации нефтяных и газовых скважин
- •5.1 Условие притока флюидов к забоям скважин под действием упругих сил
- •5.2 Стационарные и нестационарные режимы исследования скважин (индикаторная кривая и кривая восстановления давления).
- •Исследование скважин методом установившихся отборов (стационарные режимы исследования)
- •Исследование скважин методом неустановившихся отборов (кривая восстановления давления)
- •5.3 Система «пласт-скважина» и способы эксплуатации скважин; предел фонтанирования скважины. Обводнение добывающих скважин: источники и пути поступления воды. Технологический режим работы скважин.
- •Обводнение добывающих скважин: источники и пути поступления воды.
- •Технологический режим работы скважин.
- •Тема 6. Основные закономерности разработки залежей нефти
- •6.1 Динамика текущего пластового давления в процессе разработки. Заводнение залежи: преимущества и недостатки.
- •Площадное заводнение
- •1 Площади, не охваченные процессом
- •6.3 Стадии разработки нефтяной залежи; характеристика отдельных стадий. Основной период разработки залежи.
- •Тема 7. Основные эксплуатационные характеристики залежей нефти
- •7.1 Термобарическая характеристика залежи. Влияние начальных температуры и давления в залежи и состава ув на возможный ход разработки.
- •7.2 Режимы работы пластов как проявление определенного вида пластовой энергии, под действием которой к забоям скважин движутся пластовые жидкости
- •7.3 Классификация режимов Водонапорный режим
- •Упругий режим
- •Упруговодонапорный режим
- •Газонапорный режим
- •Режим растворенного газа
- •Гравитационный режим
- •Сравнительный анализ режимов
- •Тема 8. Основы проектирования разработки месторождений нефти и газа
- •8.1 Цели и задачи проектирования разработки. Многостадийность проектирования разработки месторождений нефти
- •8.2 Виды проектных документов, их назначение.
- •Тема 9. Объект и система разработки
- •9.1 Выбор объектов по разрезу и площади месторождения. Объединение нескольких продуктивных пластов в один объект разработки; обоснование целесообразности объединения
- •9.2 Понятие о системе разработки нефтяных месторождений. Системы разработки по методу разбуривания месторождения в целом. Системы разработки залежей с естественным напором краевых и подошвенных вод.
- •Системы разработки по методу разбуривания месторождения в целом
- •Системы разработки залежей с естественным напором краевых и подошвенных вод.
- •9.3 Схематизация формы залежи. Схематизация контуров нефтеносности. Схемы размещения добывающих и нагнетательных скважин.
- •9.4 Характеристика основных технологических показателей разработки. Характеристика основных экономических показателей разработки
- •9.5 Проведение гидродинамических расчетов основных показателей разработки
- •9.6 Понятие о рациональной системе разработки. Выбор рационального варианта
- •Тема 10. Основы анализа разработки
- •10.1 Цель и задачи анализа текущего состояния разработки в рамках авторского надзора. Методы проведения анализа.
- •Применение статистических методов и упрощенных методик для анализа и прогноза разработки, оценки эффективности проводимых на залежи геолого-технических мероприятий
- •10.2 Факторы, осложняющие процесс вытеснения нефти водой.
- •Фазовые проницаемости. Кривые относительных фазовых проницаемостей
- •10.3 Различия вязкостей нефти и воды как фактор, осложняющий процесс вытеснения нефти. Параметр безразмерной вязкости μ0, его влияние на характер выработки запасов.
- •10.4 Методы повышения коэффициента нефтеизвлечения (кин).
- •10.5 Рациональное число и размещение проектных скважин. Основной фонд скважин. Резервные скважины.
- •10.6 Расчет процессов нагнетания.
- •Тема 11. Разработка залежей, приуроченных к трещиноватым коллекторам
- •11.1 Контроль и регулирование разработкой нефтяных залежей Контроль за процессом разработки
- •Регулирование процесса разработки (рпр)
- •11.2 Основы компьютерного моделировании строения залежей ув и их разработки
- •Основные виды исходных данных для цифрового геологического моделирования
- •Основные исходные данные для создания гидродинамической модели
- •Тема 12. Разработка газовых и газоконденсатных залежей
- •12.1 Состав природных газов. Классификация природных газов. Классификация газовых залежей и месторождений.
- •12.2 Физические свойства природных газов. Тепловые свойства природных газов. Дросселирование газов. Гидратообразование.
- •12.3 Технологический режим работы газовой скважины. Свободный и абсолютно свободный дебит.
- •Тема 13 Способы эксплуатации газовых скважин
- •Газогидродинамические исследования скважин при установившихся режимах (метод установившихся отборов)
- •Исследования скважин при нестационарных режимах фильтрации
- •Режимы работы газовых пластов
- •Газовый режим
- •Водонапорный режим
- •Размещение скважин при разработке газоконденсатных залежей
- •Определение показателей разработки при газовом режиме для периода нарастающей добычи
- •13.6 Особенности разработки газоконденсатной залежи. Явления обратной конденсации. Особенности разработки газонефтяных и нефтегазовых залежей
- •Особенности разработки нефтегазовых залежей
- •Системы сбора газа на промысле. Промысловая подготовка газа к транспорту
- •Подземное хранение газа
- •Список литературы
- •Содержание
Подземное хранение газа
Современные системы газоснабжения — совокупность сложных, дорогих, размещенных на значительных расстояниях сооружений. Все они представляют собой технологически единый комплекс, эксплуатирующийся непрерывно и с полной нагрузкой.
Для системы снабжения городов и промышленных предприятий характерна неравномерность потребления газа. Это объясняется тем, что потребители расходуют его неравномерно по временам года, месяцам, неделям, суткам.
Например, зимой газа расходуется всегда больше, чем летом; в дневное время, как правило, больше, чем ночью; в холодные и напряженные с точки зрения производства дни потребность в газе увеличивается по сравнению со среднегодовой в 510 и более раз. Для покрытия этой неравномерности сооружают хранилища, способные вместить летние избытки газа и выдать газ потребителям зимой или в непредвиденных ситуациях.
Типичное место расположения хранилища район потребителя. Однако возможны случаи, когда хранилища целесообразно размещать в иных местах, например в центре крупного промышленного района или рядом с газоперерабатывающим заводом, с целью обеспечить его равномерную работу.
Существует много типов газохранилищ. Однако практический интерес представляют подземные хранилища, которые можно подразделить на два основных типа: 1) хранилища, сооруженные в пористых горных породах; 2) хранилища в полостях горных пород — шахтах, пещерах, рудниках, а также в отложениях каменной соли.
Пористые газохранилища, в свою очередь, подразделяются на те, которые созданы в истощенных газовых, нефтяных и газоконденсатных месторождениях, и те, которые образованы закачкой газа в водонасыщенные пласты.
Исходя из технико-экономических соображений, основная масса газа (8085 %) хранится в истощенных газовых и газоконденсатных месторождениях, 1520 % хранится в водоносных пластах, на долю солянокаменных каверн приходится менее 1 %.
Что касается нефтяных пластов, то их использование вследствие ряда технологических затруднений носит эпизодический характер.
Подземные хранилища газа в пористых
и проницаемых горных породах
Создание ПХГ обычно происходит без осложнении при изменении градиента давления до 0,0154 МПа/м, т. e. при превышении нормального гидростатического давления в 1,54 раза. Верхним пределом давления в некоторых случаях считается горное давление на глубине залегания хранилища. Установлено, что при наличии глинистой покрышки толщиной более 5 м максимально допустимое давление можно превышать гидростатическое на глубине залегания хранилища в 1,3 -1,5 раза.
При повышении давления в пласте выше начального гидростатического на кровле подземного пласта возникает перепад давления, что иногда может оказаться достаточным, чтобы преодолеть «пороговое» давление, создаваемое капиллярными силами в поровых каналах небольшого радиуса. В этом случае начнемся вытеснение воды газом из поровых каналов и покрышка потеряет герметичность.
Наилучшими ПХГ, сооруженными в пористых и проницаемых горных породах, предназначенными для регулирования сезонной неравномерности газопотребления, с экономической точки зрения являются хранилища, построенные на базе истощенных газовых, газоконденсатных и нефтяных месторождений. Это объясняется тем, что отпадает необходимость проведения геолого-разведочных работ, так как известны основные физико-геологические и эксплуатационные параметры пласта-коллектора и его покрышки. Кроме того, на месторождении имеется определенное количество эксплуатационных скважин, а также наземный комплекс подготовки газа к транспорту, которые в дальнейшем используются для целей подземного хранения газа.
При проектировании строительства подземного хранилища в истощенном газовом месторождении определяют:
максимально допустимое давление;
минимально необходимое давление в конце периода отбора;
объемы активного и буферного газов;
число нагнетательно-эксплуатационных скважин;
диаметр и толщину стенок промысловых и соединительного газопроводов;
тип компрессорного агрегата для КС;
7) общую мощность КС;
8) тип и размер оборудования подземного хранилища для очистки газа от твердых взвесей при закачке его в пласт и осушки при отборе;
9) объем дополнительных капитальных вложений, себестоимость хранения газа, срок окупаемости дополнительных капитальных вложений.
После этого проводят ревизию технологического состояния скважин, оборудования устья, промысловых газопроводов, сепараторов, компрессоров, определяют виды ремонта, замены, а также необходимость строительства новых сооружений.
Строительство ПХГ в истощенном месторождении осуществляется в два этапа. На первом этапе проводится промышленное заполнение хранилища газом, на втором - циклическая эксплуатация.
Эксплуатация подземного хранилища газа, созданного в пористых, проницаемых горных породах осуществляется следующим образом (рис.13.42).
Рис.13.42. Принципиальная технологическая схема эксплуатации подземного хранилища газа: 1 - газовый пласт; 2 - газовая скважина; 3 - сепаратор; 4 - газораспределительный пункт; 5 - сепаратор (охлажденный газ); 6 - установка осушки газа: 7 - градирня; 8 - сепаратор (горячий газ); 9 - компрессор; 10 - пылеуловитель; 11 - магистральный газопровод; 12 - соединительный газопровод
Газ по соединительному газопроводу (12) из магистрального газопровода (11) поступает в компрессорный цех подземного хранилища. В компрессорном цехе газ первоначально очищается в пылеуловителях (10) от взвешенных твердых частиц и капельной влаги, а потом направляется на прием компрессоров (9). Компромированный газ подается в блок охлаждения и очистки газа от масла, где последовательно сначала проходит через сепаратор (горячий газ) (8), потом охлаждается в градирне (7), далее проходит через сепаратор (охлажденный газ) (5). Для отделения капельного масла (для отделения паров масла в технологическую схему включают адсорберы и фильтры).
Пройдя эти аппараты, охлажденный и очищенный от масла газ поступает по газосборному коллектору на газораспределительный пункт ГРП (4). В ГРП происходит разделение потока газа по скважинам и замер количества газа, закачиваемого в каждую нагнетательно-экс-плуатационную скважину (2).
При отборе газ из эксплуатационных скважин (2) по индивидуальным шлейфам поступает на ГРП (4). При этом предварительно капельная вода из газа отделяется в сепараторах (3) и сбрасывается в специальные замерные емкости. В ГРП производится замер расхода газа, поступающего из каждой скважины. Далее по газосборному коллектору газ поступает на установку осушки газа (6), откуда при температуре, соответствующей точке росы, поступает через соединительный газопровод (12) в газопровод (11).
Контроль за герметичностью подземного хранилища осуществляется в отдельности для скважины и для пласта-коллектора. Испытанию на герметичность подвергается каждая скважина независимо оттого, что ПХГ создается на базе выработанных газовых, газоконден-сатных и нефтяных месторождений или ПХГ создается в водоносных пластах.
При недостаточной изученности месторождения, низком количестве исходной геолого-промысловой и геофизической информации составляется программа доразведки месторождения и повторного обследования пробуренного фонда скважин. Определяются остаточные запасы газа, нефти, конденсата и сопутствующих компонентов, степень и характер выработанной залежей. Остаточные запасы углеводородов передаются на баланс газохранилища.
Остаточный запас газа, находящегося в месторождении, на базе которого сооружается ПХГ, определяется по трем существующим методам: объемному, по падению давления и по уравнению материального баланса.
Формула для подсчета запасов газа объемным методом имеет следующий вид:
,
(13.53)
где: V – количество газа, находящегося в ПХГ на дату расчета, м3
F – площадь в пределах контура газоносности, м2
h – мощность пористой части газоносного пласта, м
m – коэффициент пористости
P – среднее абсолютное давление в залежи на дату расчета, кгс/см2
-
поправка на температуру для приведения
объема газа к стандартной температуре
T – абсолютная температура
tст=20˚C, tпл – пластовая температура
α – коэффициент газонасыщения
Расчет количества газа, находящегося в ПХГ, по методу падения давления применяется для пластов, в которых первоначальный объем пор, занятых газом, не изменяется по величине в процессе эксплуатации хранилища. Формула подсчета основана на предположении о постоянстве количества извлекаемого газа на 1 бар падения давления о все периоды разработки газовой залежи:
,
(13.54)
где: Q – количество добытого газа за период разработки газовой залежи от первой до второй даты на 1 бар падения давления, м3
Q1 и Q2 – объемы добытого газа на первую и вторую дату с начала разработки газовой залежи, м3
P1 и P2 – соответствующие давления газовой залежи после добычи соответствующих объемов газа Q1 и Q2, бар.
Промышленный запас газа, находящегося в ПХГ, можно определить по формуле:
,
(13.55)
где: ΔP – перепад давления между предыдущей и конечной величиной, бар.
Оценка запасов газа по уравнению материального баланса с учетом влияния пластовой воды записывается в виде:
,
(13.56)
где: V – текущий объем газа в пласте, м3
Vн – начальный объем газа в пласте, м3
Q – добытое количество газа, м3
Активный объем газа подземного хранилища рассчитывается на количество газа, соответствующего сезонному колебанию в газопотреблении. Это количество равно объему газа, ежегодно закачиваемого и отбираемого из хранилища в соответствии с установленным технологическим режимом эксплуатации ПХГ.
Численное значение активного объема газа определяется с использованием коэффициентов месячной неравномерности газопотребления, вычисленных из графика годового потребления газа:
и
(13.57)
Производительность хранилища по отбору газа определяется из графика годового потребления газа. Величину максимальной производительности хранилища по отбору газа qmax приблизительно можно принять в 1,5 – 2 раза выше, чем среднесуточный отбор газа из хранилища за сезон.
,
(13.58)
где: t0 – продолжительность периода отбора газа из хранилища, ч/сут.
Такой метод определения qmax справедлив в том случае, когда хранилище предназначено для регулирования сезонных неравномерностей газопотребления.
Буферный газ в подземном хранилище.
Общий объем газа, находящегося в ПХГ, всегда больше активного объема на величину буферного газа, который постоянно находится в пласте-коллекторе для поддержания энергетического потенциала газохранилища.
(13.59)
где: Qоб – общий объем газа, м3
Qа - активный объем газа, м3
Qб - буферный объем газа, м3
Буферный газ подразделяется на две составляющие. Первую часть составляет газ, который может быть отобран в случае экстренной необходимости или в случае ликвидации ПХГ. Вторую часть составляет газ, который экономически нецелесообразно извлекать из пласта, то есть остаточный газ.
(13.60)
где: Qиз – извлекаемый объем газа, м3
Qос - остаточный объем газа, м3
Подземные хранилища в истощенных газовых и газоконденсатных месторождениях
Истощенные газовые и газоконденсатные месторождения во многих случаях являются наилучшими объектами для создания в них подземных хранилищ природного газа. Месторождение полностью разведано, известны геометрические размеры и форма площади газоносности, геолого-физические параметры пласта, начальные давления, температура и состав газа, изменение во времени дебитов скважин, режим эксплуатации скважин, герметичность покрышки. На месторождении имеется определенный фонд эксплуатационных и наблюдательных скважин, промысловые сооружения для получения товарного газа.
При проектировании подземного хранилища в истощенных газовых и газоконденсатных месторождениях необходимо определить: максимально допустимое и минимально необходимое давление газа в хранилище, объем активного и буферного газов, число нагнетательно-эксплуатационных скважин, тип компрессорного агрегата и общую мощность компрессорной станции, тип и размер оборудования для очистки т осушки газа.
В процессе подземного хранения газа в частично выработанном нефтяном пласте газ будет не только вытеснять нефть к забоям добывающих скважин (или к периферии залежи), но и растворять и испарять компоненты нефти и выносить их из пласта на поверхность. На процессы вытеснения, растворения и испарения нефти хранящимся газом влияют многие физико-геологические параметры пласта-коллектора, физические свойства нефти и газа, технологические параметры работы ПХГ.
Основными из них являются: коэффициенты пористости, проницаемости, удельная поверхность и ее состояние, объем остаточной воды; неоднородность пласта по площади и разрезу; давление и температура; сила тяжести; плотность остаточной нефти; соотношение вязкости газа и нефти; отношение объема газа, закачанного в пласт, к объему порового пространства пласта и др.
Нагнетательные скважины целесообразно размещать в приподнятой, сводовой части структуры, добывающие в пониженных частях. Аналитический расчет уменьшения остаточной нефтенасыщенности в пласте в процессе подземного хранения газа можно провести на ЭВМ.
Для разработки технологического проекта эксплуатации ПХГ, созданного на базе истощенного газового месторождения пластового типа (рис.13.43.), кроме вышеперечисленных известных параметров, имеющих общепромысловый характер, необходимо знать параметры, относящиеся к эксплуатации хранилища. В основном они относятся к процессам закачки и отбора газа из хранилища.
Рис.13.43. Схема истощенной газовой залежи пластового типа
Основными технологическими параметрами процесса закачки газа являются: максимальный объем газа, который можно закачать в хранилище, изменение во времени давлений в хранилище, на забоях и устьях нагнетательных скважин, необходимое число компрессоров для закачки газа и др.
Основными технологическими параметрами процесса отбора газа из хранилища, которые необходимо дополнительно определить, являются: пластовое и забойное давление газа, потребное число эксплуатационных скважин и их дебит.
Объем закачанного газа на момент времени τ, приведенный к атмосферному давлению и пластовой температуре, можно определить по уравнению
,
(13.61)
где:
-
газонасыщенный объем порового
пространства, м3;
σ- коэффициент газонасыщенности;
Ω0- общий объем порового пространства пласта-коллектора, м3;
Рат - нормальное давление газа, равное 1 ат. (техническая атмосфера) = 0,1 МПа
-
средневзвешенное по газонасыщенному
объему порового пространства пласта
давление в момент времени τ,
МПа
-
коэффициент сжимаемости газа при
и
;
Рн - начальное давление газа в хранилище (до закачки газа), МПа;
zн - коэффициент сжимаемости газа при Рн и Тпл.
Подземные хранилища в выработанных нефтяных месторождениях
Опыт эксплуатации выработанного нефтяного месторождения дает ценный материал для оценки возможности использования его в качестве подземного хранилища газа. Факт существования нефтяного месторождения свидетельствует о герметичности кровли. Кроме того, известны объемы добытой нефти, газа и воды, изменение давлений и дебитов по скважинам, геолого-физические параметры пласта-коллектора и физические свойства нефти, газа и воды.
Для переоборудования нефтепромысла в подземное хранилище газа необходимо обследовать и отремонтировать старые заброшенные или негерметичные скважины, изучить состояние и герметичность шлейфов, промысловых нефтепродуктов и другого оборудования для возможности их использования в процессе подземного хранения газа, реконструировать промысловые газопроводы, построить новые установки для очистки и осушки газа, пробурить новые нагнетательно-эксплуатационные скважины.
Параллельно проводятся исследования с целью определения производительности закачки и отбора нагнетательно-эксплуатационных скважин, режима работы хранилища, максимально возможного объема извлечения остаточной нефти, мероприятий по увеличению производительности скважин, изменения состава газа в процессе его хранения и отбора.
В процессе подземного хранения газа в частично выработанной нефтяной залежи газ будет не только вытеснять нефть к забоям эксплуатационных скважин или к периферии залежи, но и растворять и испарять компоненты нефти и выносить их из пласта на поверхность. На процессы вытеснения, растворения и испарения нефти хранящимся газом влияют многие физико-геологические параметры пласта-коллектора, физические свойства нефти и газа, технологические параметры ПХГ.
Расчеты параметров отбора газа из хранилища, созданного на базе истощенного нефтяного месторождения, аналогичны рассмотренным выше для хранилищ, созданных на базе истощенных газовых месторождений. Однако в этом случае коэффициенты фильтрационного сопротивления будут уменьшаться в процессе эксплуатации хранилища из-за уменьшения насыщенности порового пространства нефтью и связанной водой и увеличения газонасыщенной мощности.
Максимальный объем газа, который можно закачать в выработанную нефтяную залежь при постоянном объеме порового пространства, состоит из трех объемов газа: закачанного в газовую шапку залежи, растворенного в оставшейся нефти, окклюдированного (рис.13.44):
(13.62)
Рис.13.44. Схематический разрез нефтяной залежи массивного типа в конце разработки
Подземные хранилища в водонасыщенных коллекторах
Во многих случаях в районах крупных центров газопотребления нет выработанных газовых или нефтяных залежей, пригодных для создания подземных хранилищ газа. Однако в геологическом разрезе пород этих районов почти всегда имеются водонасыщенные пласты, в ловушках которых можно создать подземные хранилища газа.
Промышленное освоение водоносных структур с целью подземного хранения природного газа началось в нашей стране с 50-х годов. Геолого-разведочные работы были начаты в 1956 году. В результате в 1959 году была начата закачка газа в первое хранилище газа в водоносном пласте.
Основываясь на теории создания газохранилищ в малоамплитудных ловушках, в 1963 году было построено единственное в мире Гатчинское (под Санкт-Петербургом) газохранилище в горизонтальном пласте, расположенное там, где геологическими исследованиями структурные ловушки не выявлены.
Обязательным условием эксплуатации подземного хранилища является наличие непроницаемого экрана в его кровле. Следовательно, в процессе разведки и опытной закачки газа необходимо определить степень герметичности кровли, ловушки, а также рассчитать коэффициент проницаемости водонасыщенного коллектора, изучить его прочностные свойства, определить продуктивные характеристики эксплуатационных скважин.
Водоносная структура считается надежной для строительства ПХГ, если ее кровля представлена глинистыми породами мощностью 50-100 м. Однако на практике используются и менее мощные покрышки.
На первой стадии сооружения хранилища, когда начинается разведочная закачка газа в водоносном пласте отсутствует газовый объем. В этом случае закачка газа осуществляется через одну скважину, расположенную в куполе поднятия. Дополнительные скважины подключаются под закачку после подхода к ним газа.
Этап промышленной закачки хранилища газом начинается при условиях, когда в пласте имеется достаточно большой объем газа. Поэтому этот этап характеризуется сочетанием процессов вытеснения воды из ловушки с параллельной эксплуатацией сооружаемого хранилища и изменения давления газа во времени.
На этапе циклической эксплуатации хранилища, расположенного в водоносном пласте, необходимо определить максимальное, минимальное, среднее и текущее давление газа в пласте, а также вычислить максимальный, минимальный и средний объемы порового пространства, занятого газом. Знание максимальной величины необходимо для определения динамики расширения газового объема и выхода его за пределы ловушки. Минимальные значения указанных параметров необходимо знать для прогнозирования условия обводнения скважин.
Уравнение баланса газа в залежи:
,
(13.63)
где: Ωг и Ω0 – соответственно текущий и начальный объемы порового пространства газонасыщенной части залежи, м3.
α- коэффициент объемной газонасыщенности обводненной зоны в долях от эффективной пористости.
-
средневзвешенное приведенное давление
в обводненной части залежи, кгс/см2.
Подземные хранилища, создаваемые в отложениях каменной соли
Если ПХГ в пористых структурах предназначены в основном для сглаживания сезонной неравномерности газопотребления, то ПХГ, созданные в каменной соли, могут быть использованы преимущественно для покрытия пиковых нагрузок, поскольку могут эксплуатироваться в «рывковом» режиме с производительностью отбора из единичной скважины, на порядок превышающий темпы отбора газа из скважины ПХГ в пористых структурах.
ПХГ в каменной соли включает в себя на стадии строительства: технологические скважины, подземные выработки-емкости, водорассольный комплекс (водозаборы, насосные станции для воды и рассола, нагнетательные скважины, водо- и рассолопроводы, рассолоотстойники и т.д.), контрольно-наблюдательные скважины, производственно-административные здания, инженерные коммуникации. На стадии эксплуатации - парк подземных резервуаров, наземный технологический комплекс (компрессорная станция, установки очистки и охлаждения газа, узел замера расхода газа, установки подготовки газа к транспорту, газовые шлейфы и коллекторы и др.), производственноадминистративные здания, инженерные коммуникации.
Процесс растворения соли при строительстве подземных резервуаров геотехнологическим методом через буровые скважины относится к внутренней задаче массообмена. Этот процесс описывается уравнениями движения, энергии, диффузии, неразрывности. Для полного решения задачи процесса подземного растворения соли необходимо воспользоваться численными методами расчета, применение которых не всегда является простым. Поэтому в настоящее время в основном расчет параметров процесса подземного растворения соли осуществляется с применением критериальных уравнений. Эмпирические коэффициенты, входящие в критериальные уравнения, определяются экспериментально на основании моделирования конкретной технологии, на основе которой будут в дальнейшем сооружаться подземные резервуары данного хранилища.
Принципиальная технологическая схема эксплуатации подземного хранилища природного газа, созданного в отложениях каменной соли, приводится на рис.13.45.
Рис.13.45. Принципиальная технологическая схема эксплуатации подземного хранилища природного газа
1 - подземный резервуар; 2 - пакер; 3 - подвесная колонна; 4 - обсадная колонна; 5 - холодильник; 6 - маслоотбойник; 7 - компрессор; 8 - узел замера газа; 9 - фильтр-сепаратор; 10 - пылеуловитель; 11 - магистральный газопровод; 12 - установка осушки газа; 13 - теплообменник; 14 -сепаратор; 15 - узел дросселирования
Закачка или отбор природного газа в зависимости от режима эксплуатации хранилища осуществляется как в одиночный резервуар, так и группу резервуаров. Закачка газа осуществляется следующим образом. Природный газ из магистрального газопровода (11) по газопроводу-отводу направляется на площадку подземного комплекса хранилища. Если хранилище размещено недалеко от магистрального газопровода, в этом случае газ на площадку хранилища подается без использования дополнительной компрессорной станции. Если хранилище размещено на достаточном расстоянии от магистрального газопровода и энергии сжатого газа, находящегося в газопроводе, не хватает для подачи его на площадку хранилища, в этом случае сооружается промежуточная компрессорная станция.
Попадая на площадку наземного комплекса хранилища, газ сначала очищается от твердых механических (10) и жидко капельных (9) примесей. Затем, проходя через узел замера количества газа (8), поток направляется к компрессорной станции (7). После компрессирования в каждой ступени газ проходит через маслоотделитель (6), охлаждается в холодильнике (5) и направляется на устье подземного резервуара. В выработку-емкость газ закачивается по подвесной колонне.
Межтрубное пространство обсадной (4) и подвесной (3) колонн изолируется с помощью пакера (2) и заполняется антикоррозийной жидкостью.
Отбор газа из выработки-емкости осуществляется по подвесной колонне. Прежде чем газ попадает в магистральный газопровод, он проходит полный цикл подготовки газа к транспорту. При этом изменяются давления, температура и влажность газа. Первоначально в узле дросселирования (15) снижается давление газа до величины, соответствующей давлению в магистральном газопроводе (11). Далее поток газа, поочередно проходя через сепаратор (14) для выделения капельной жидкости (если в газе есть), теплообменник (13), где происходит подогрев газа, установку осушки газа (12) и узел замера (8), подается по газопроводу-отводу в магистральный газопровод (11).
Сооружение подземных резервуаров в в отложениях каменной соли
Перед началом растворения каменной соли при сооружении подземной выработки межтрубное пространство основной обсадной и внешней подвесной колонн в технологической скважине следует заполнить жидким или газообразным нерастворителем в соответствии с проектом.
Процесс растворения соленосной толщи при сооружении выработки следует начинать с подачи растворителя в центральную колонну с одновременным отводом образующегося рассола по межтрубному пространству подвесных колонн (прямоточный режим).
Переход на режим работ с подачей растворителя в межтрубное пространство внешней и центральной рабочих колонн и выдачей рассола по центральной колонне (противоточный режим) производится после 10-20 мин работы на прямоточном режиме. Количество подаваемой воды для ведения процесса растворения на каждой ступени создания подземной выработки должно соответствовать значению, заданному технологическим регламентом. При отклонении от заданного значения оно должно быть восстановлено изменением производительности насосной установки или регулировкой степени открытия задвижки на водоподающем трубопроводе. В процессе растворения каменной соли крупные фракции нерастворимых включений, а также обломки брекчированных трещиноватых нерастворимых прослоев выпадают на дно создаваемой подземной выработки.
При зашламовании центральной колонны нерастворимыми включениями необходимо осуществить приподъем колонны на 1-2 м, предусмотрев для выполнения этой операции необходимый набор патрубков соответствующей длины.
В процессе создания выработки для обеспечения поэтапного ее формообразования необходимо производить комплекс измерений по определению:
объема закачанного в скважину нерастворителя;
почасовой и среднесменной производительности подачи в скважину воды;
температуры подаваемой воды;
почасовой и среднесменной производительности выдачи из скважины рассола;
среднесменной концентрации выдаваемого рассола;
температуры выдаваемого рассола;
выносимых с рассолом нерастворимых веществ;
давления на водяной и рассольной линиях и на линии нерастворителя.
Подбашмачный контроль границы раздела "жидкий нерастворитель-рассол" следует осуществлять путем порционной закачки в межтрубное пространство основной обсадной и внешней подвесной колонн нерастворителя с выдержкой после закачки каждой порции в течение времени, достаточного для всплытия нерастворителя из-под башмака внешней колонны к устью технологической скважины. Операции по закачке порций нерастворителя продолжают до фиксации нерастворителя в приустьевой части межтрубного пространства колонн, что соответствует положению контакта "нерастворитель-рассол" у башмака внешней колонны.
Создание выработок-емкостей бесшахтных хранилищ следует предусматривать, как правило, через одну скважину. Допускается создание выработок-емкостей через несколько скважин.
При строительстве выработок-емкостей через одну скважину следует принимать одну из следующих технологических схем растворения соли водой:
- снизу вверх с перемещением внешней подвесной колонны на каждом этапе (рис.13.46.,а);
- снизу вверх без перемещения внешней подвесной колонны (рис.13.46.,б);
- с подачей растворителя через перфорированную подвесную колонну (рис.13.46.,в);
- сверху вниз без перемещения внешней подвесной колонны с постепенным накоплением нерастворителя в верхней части растворяемой выработки (рис.13.46.,г);
- "комбинированная" схема, когда нижняя часть выработки создается по схеме "снизу вверх", а верхняя - по схеме "сверху вниз" (рис.13.46.,д);
- с применением энергии "затопленных струй" с вводом растворителя в нижнюю часть выработки через насадки (рис.13.46.,е).
При строительстве выработок-емкостей через одну скважину допускается создавать подземные выработки одну над другой (двухъярусного типа). Выработки сообщаются друг с другом и с поверхностью земли общей эксплуатационной скважиной.
Рис.13.46. Технологические схемы сооружения выработок-емкостей бесшахтных резервуаров в каменной соли I-VII - ступени сооружения выработок-емкостей
При строительстве резервуаров через две скважины (рис.13.46.,ж) следует предусматривать как независимую, так и совместную подачу растворителя. Соединение выработок следует предусматривать, как правило, сбойкой гидроврубов или с помощью специальных устройств.
Площадь поперечного сечения вскрывающих выработок подземных резервуаров должна приниматься минимальной, исходя из условий:
размещения постоянного эксплуатационного оборудования;
размещения горнопроходческого оборудования;
пропуска необходимого количества воздуха при скорости его движения не более 8 м/с;
возможности спуска оборудования или его узлов, имеющих наибольшие габариты.
Сечения вскрывающих выработок при размещении в них стационарного эксплуатационного оборудования следует принимать с учетом:
устройства лестничного отделения для вертикальных и наклонных выработок с углом наклона более 45° или свободного людского прохода для горизонтальных и наклонных выработок с углом наклона до 45° в соответствии с требованиями Единых правил безопасности при разработке рудных, нерудных и россыпных месторождений подземным способом;
устройства грузолюдского подъема в вертикальных и наклонных выработках;
оставления проема для спуска-подъема длинномерных предметов в вертикальных выработках;
прокладки труб принудительной вентиляции;
проведения ремонтно-восстановительных работ;
прокладки продуктовых и других трубопроводов и кабелей.
качестве механического грузолюдского подъема на период эксплуатации хранилищ с подземными насосными камерами, как правило, должен применяться лифтовый подъемник. Грузоподъемность лифтового подъемника должна определяться наибольшим весом транспортируемого оборудования или его частей, но не менее 3500 Н.
Околоствольные (коллекторные) и подходные выработки следует проектировать минимальной длины и сечения с учетом размещения в них эксплуатационного оборудования, а также с учетом прохода людей и транспортирования оборудования.
Площадь поперечного сечения коллекторных выработок должна быть проверена на пропуск необходимого для вентиляции количества воздуха при скорости его движения не более 8 м/с.
Во вскрывающих, коллекторных и подходных выработках и подземных насосных следует предусматривать системы приточной и вытяжной вентиляции с искусственным побуждением. При этом должно быть предусмотрено резервирование всех приточных и вытяжных вентиляторов.
В хранилищах, предназначенных для нескольких видов продуктов, объединять между собой вытяжные системы вентиляции, обслуживающие подземные насосные камеры для перекачки различных видов продукта, не допускается.
Часовую кратность воздухообмена следует принимать:
- в подземных насосных камерах и в зонах перемычек - 20;
- в стволах и коллекторных выработках - 6.
При хранении этилированных нефтепродуктов указанные кратности воздухообмена должны быть увеличены на 50%.
Подачу приточного воздуха в подземные насосные камеры следует предусматривать в рабочую зону этих помещений.
В подземных насосных камерах в дополнение к общеобменной вентиляции следует предусматривать устройство местных отсосов в местах возможных утечек паров хранимых продуктов.
Для прокладки дыхательных и эксплуатационных трубопроводов допускается использовать скважины, пробуренные с поверхности земли в выработки.
Продуктовые трубопроводы следует предусматривать внутри обсадных колонн скважин или в трубах большего диаметра, расположенных в стволе.
Заборные зумпфы должны крепиться монолитным бетоном и облицовываться сварными металлическими обечайками.
Для герметизации выработок-емкостей следует предусматривать следующие конструкции герметичных перемычек:
- бетонная с контурным гидрозатвором (рис.13.47.);
Рис.13.47. Бетонная перемычка с контурным гидрозатвором
1 - выработка-емкость; 2 - напорная стенка; 3 - полость контурного гидрозатвора; 4, 5 - система трубопроводов для залива и перемешивания изолирующей жидкости; 6 - металлический лист
- двойная бетонная с гидрозатвором (рис.13.48. и 13.49.);
Рис.13.48. Двойная бетонная перемычка
1 - выработка-емкость; 2 - напорные стенки герметичной перемычки; 3 - полость гидрозатвора с изолирующей жидкостью; 4 - штроба; 5 - трубопровод для выпуска воздуха из гидрозатвора; 6 - трубопровод для заполнения гидрозатвора
Рис.13.49. Двойная бетонная перемычка с гидрозатвором, расположенная во вскрывающей выработке
1 - выработка-емкость; 2 - бетонные стенки герметичной перемычки; 3 - трубопровод для заполнения гидрозатвора; 4 - полость гидрозатвора с изолирующей жидкостью; 5 - зумпф
- двойная металлическая (рис.13.50 и 13.51);
Рис.13.50. Двойная металлическая перемычка, расположенная в верхней части ствола: 1, 2 - металлические перемычки в обсадной трубе; 3 - устье ствола; 4 - продуктонепроницаемый раствор; 5 - обсадная труба; 6 - выработка-емкость; 7 - зумпф
Рис.13.51. Двойная металлическая перемычка, расположенная
во вскрывающей выработке: 1 - опорный венец крепи ствола; 2 - кольцевые металлические воротники; 3 - металлические перемычки; 4 - продуктонепроницаемый раствор; 5 - металлическая сварная обечайка; 6 - железобетонная рубашка; 7 - выработка-емкость; 8 - зумпф
- одинарная металлическая.
В перемычках, как правило, следует предусматривать проем диаметром в свету не менее 600 мм, перекрываемый герметичным люком.
Бетоны, используемые для сооружения герметичных перемычек, должны иметь:
класс по прочности на сжатие В35;
класс
по прочности на осевое растяжение B2,4;
марку по морозостойкости не ниже F100;
марку по водонепроницаемости не ниже W12;
коэффициент
проницаемости по газу не более 10мкм
;
коэффициент агрессивной стойкости к углеводородным средам не ниже 0,8.
Для тампонажа затрубного пространства скважин, закрепного пространства выработок, трещиноватых зон, контура перемычек следует применять растворы, приготовленные на основе цементов, удовлетворяющие следующим требованиям:
прочность при изгибе в возрасте 2 суток - не менее 2,7 МПа по ГОСТ 1581;
коэффициент
проницаемости по газу - не более 10мкм
;
деформации расширения - не менее 3 и не более 10 мм/м;
коэффициент агрессивной стойкости к углеводородным средам не менее 0,85.
Испытание подземных резервуаров на герметичность
Испытания бесшахтных резервуаров на герметичность производятся с целью установления их пригодности к эксплуатации после окончания строительства, капитального ремонта или аварийно-восстановительных работ, а также по мере необходимости в период эксплуатации.
Испытания производятся путем создания избыточного давления испытательной среды, в качестве которой могут быть использованы, в зависимости от продукта, хранимого в резервуаре, жидкие нефтепродукты, газы или рассол.
При испытаниях проверяется раздельно герметичность подвесных колонн труб, устьевой обвязки скважины с зацементированной обсадной колонной и выработки-емкости.
Герметичность устьевой обвязки устанавливается по отсутствию утечек испытательной среды в ее элементах в период проведения испытаний. При наличии таких утечек дефектные элементы подлежат замене или ремонту.
Герметичность подвесных колонн устанавливается по отсутствию перетоков испытательной среды между трубными пространствами в период проведения испытаний. При этом испытательная среда должна быть закачана в скважину на глубину, соответствующую длине испытуемого участка труб.
После установления герметичности устьевой обвязки и подвесных колонн труб осуществляются испытания на герметичность скважины с зацементированной обсадной колонной и резервуара в целом.
Для испытания скважины бесшахтного резервуара следует использовать компенсационный метод, основанный на сохранении количества нерастворителя в системе или метод контроля уровня жидкости в межтрубном пространстве.
Необходимым условием применения указанных методов является освобождение выработки-емкости от нерастворителя или хранимого продукта и отсутствие притока их остатков в скважину.
Испытание компенсационным методом допускается производить после окончания строительства резервуара перед сдачей его в эксплуатацию, при этом требуется установить внешнюю подвесную колонну таким образом, чтобы отметка башмака колонны была расположена на 0,5-1,0 м ниже башмака обсадной колонны и не менее 1,0 м выше отметки кровли выработки.
Испытание методом контроля уровня допускается производить в период окончания строительства и в процессе эксплуатации, при этом не требуется перемещать внешнюю подвесную колонну в положение выше отметки кровли выработки.
Скважины бесшахтных резервуаров для хранения нефтепродуктов допускается испытывать жидким нерастворителем или продуктом, подлежащим хранению.
Скважины бесшахтных резевуаров для хранения СУГ следует испытывать бензином прямой гонки или допускается производить испытания хранимым продуктом.
Бесшахтные резервуары для СУГ, нефти и нефтепродуктов в целом следует испытывать рассолом, при этом допускается наличие в межтрубье обсадной и внешней подвесной колонн испытательной среды, используемой для испытания скважины бесшахтного резервуара.
Бесшахтные резервуары для хранения газа следует испытывать газом, подлежащим хранению, допускается производить испытания газом, нейтральным по отношению к хранимому продукту.
На проведение испытаний на герметичность бесшахтных резервуаров разрабатывается специальный проект.
При испытании на герметичность обсадных колонн скважин бесшахтных резервуаров компенсационным методом допускается использовать для проведения испытания подвесные колонны, использовавшиеся в процессе создания выработки-емкости (рис13.52.).
Пространство между обсадной и внешней подвесной колоннами труб следует заполнить нерастворителем до башмака внешней колонны с вытеснением рассола из скважины.
При испытании на герметичность обсадных колонн скважин методом контроля уровня жидкости в межтрубном пространстве резервуар должен быть оборудован двумя подвесными колоннами труб (внешней и центральной). Башмак подвесных колонн должен быть установлен ниже кровли выработки-емкости.
Рис.13.52. Схема испытаний на герметичность обсадных колонн скважин бесшахтных резервуаров компенсационном методом
1 - выработка-емкость; 2 - внутренняя подвесная колонна; 3 - внешняя подвесная колонна; 4 - обсадная колонна; 5 - насос для закачки рассола; 6 - мерная емкость; 7 - термометр; 8 - манометр; 9 - насос для закачки испытательной среды; 10 - мерная емкость
Допускается применять для проведения испытаний подвесные колонны, использовавшиеся в процессе создания выработки.
Испытание следует проводить, как правило, не ранее чем через 1,5 мес. после окончания сооружения выработки-емкости.
Для проведения испытаний используются приборы и оборудование, представленные на рисунке 13.53.
Дифманометр
должен быть рассчитан на испытательное
давление и иметь цену деления не более
5·10МПа.
Мерная емкость должна быть рассчитана на прием рассола в количестве, равном объему закачиваемой испытательной жидкости.
Напорное устройство для закачки испытательной среды в скважину должно обеспечивать ее подачу под давлением не ниже испытательного.
Количество испытательного флюида для проведения испытаний должно быть равно объему межтрубных пространств внешней и внутренней подвесных и обсадной колонн в интервале до кровли выработки.
При неустойчивой погоде (резкие изменения температуры, осадки) следует укрыть устье скважины от прямых солнечных лучей и осадков для предотвращения искажений, вносимых его неравномерным охлаждением или нагревом.
Перед испытанием следует провести ревизию всех сальников и уплотнений, проверить герметичность подвесных колонн.
Рис.13.53. Схема испытаний на герметичность обсадных колонн скважин бесшахтных резервуаров методом контроля уровня жидкости в межтрубном пространстве
1 - выработка-емкость; 2 - внутренняя подвесная колонна; 3 - внешняя подвесная колонна; 4 - обсадная колонна; 5 - напорное устройство для закачки испытательной среды; 6 - расходомер; 7 - дифманометр; 8 - манометр; 9 - насос; 10 - мерная емкость
Дифманометр должен быть установлен следующим образом: патрубок со знаком "минус" для среды с меньшим давлением присоединяется к межтрубному пространству обсадной и внешней подвесных колонн, патрубок со знаком "плюс" для среды с большим давлением присоединяется к межтрубному пространству подвесных колонн, перемычка дифманометра должна быть перекрыта.
В начале испытаний следует закачивать испытательную среду в межтрубные пространства обсадной, внешней и внутренней подвесных колонн, вытесняя при этом рассол в мерную емкость. При этом перемычка между трубными пространствами должна быть открыта.
Количество испытательной жидкости, закачиваемой в скважину, должно быть таким, чтобы уровень границы раздела "испытательная жидкость-рассол" при проведении испытаний был на 1-5 м ниже башмака основной обсадной колонны и выше отметки кровли выработки-емкости.
Контроль глубины заполнения трубных пространств и отметки границы раздела ведут по объему рассола, вытесненного в мерную емкость, а также геофизическими методами.
После закачки испытательной среды, при необходимости, на всех подводящих технологических трубопроводах, кроме трубопровода, подающего рассол в центральную подвесную колонну, должны быть установлены заглушки.
После закачки заданного количества испытательной жидкости увеличивают давление жидкости в резервуаре до испытательного закачкой насыщенного рассола в центральную колонну.
Перекрывают перемычки, соединяющие межтрубные пространства обсадной, внешней и центральной подвесных колонн, и открывают перемычку дифманометра.
Через 24 и 48 часов после начала испытаний подкачивают, при необходимости, насыщенный рассол для поддержания давления на уровне испытательного.
Фиксируют ежечасно показания дифманометра в течение 3-х суток после начала испытаний.
Испытанный
участок скважины считается герметичным,
если величина утечки
,
рассчитанная за третьи сутки испытаний,
не превышает 0,02 м
.
Допускается
измерение величины
с использованием дозировочного насоса
в качестве напорного устройства для
закачки испытательной среды.
Для этого в межтрубное пространство обсадной и внешней подвесной колонны закачивают испытательную среду в конце каждых суток испытаний до тех пор, пока не восстановятся показания дифманометра, соответствующие началу испытаний.
Объем
испытательного флюида, закачанный в
конце третьих суток, принимается за
величину суточной утечки и не должен
превышать 0,02 м.
При наличии утечки и необходимости ее локализации осуществляют поинтервальные испытания. Для этого закачивают по описанной выше схеме такое количество испытательной среды, чтобы обеспечить заданный уровень границы контакта ее и рассола. Определяемая при этом утечка соответствует интервалу вышеуказанного уровня.
Начальная величина испытуемого интервала составляет, как правило, 100 м.
При наличии в данном интервале утечки, ее точное местонахождение может быть найдено при проведении, в соответствии с изложенным способом, поинтервальных испытаний путем деления данного интервала на меньшие участки длиной 10 - 20 м.
При испытании на герметичность скважин бесшахтных резервуаров газом резервуар должен быть оборудован подвесной, непроницаемой для газа колонной труб. Подвесная колонна труб в нижней части, на расстоянии 15-20 м от башмака колонны, должна иметь отверстие диаметром около 10 мм. Подвесная колонна труб устанавливается так, чтобы ее отверстие находилось ниже башмака основной обсадной колонны, но выше кровли выработки на таком расстоянии, чтобы граница раздела "газ-рассол" при увеличении давления до испытательного оставалась ниже башмака основной обсадной колонны. Испытание бесшахтных резервуаров на герметичность насыщенным рассолом производится при положительных результатах оценки герметичности скважины.
Допускается наличие жидкой испытательной среды, использовавшейся для испытаний закрепленной и незакрепленной частей скважины, в затрубном пространстве внешней подвесной колонны.
Для проведения испытаний используется насос для закачки рассола, мерная емкость для замера объема закачиваемого и отбираемого рассола, манометры (рис.13.54.), термометры, денсиметры.
Рис.13.54. Схема испытаний на герметичность бесшахтного резервуара рассолом: 1 - выработка-емкость; 2 - подвесная колонна; 3 - обсадная колонна; 4 - насос; 5 - мерная емкость; 6 - манометр
Измерение давления рассола на устье скважины производится образцовым манометром, устанавливаемом на внутренней подвесной колонне.
С целью исключения влияния недонасыщения рассола в резервуаре испытание выработки следует начинать не ранее, чем через 1,5 месяца после окончания работ по сооружению выработки-емкости.
Испытание производится следующим образом:
в выработку закачивают насыщенный рассол до достижения испытательного давления;
затем закачка рассола прекращается и фиксируется изменение давления на устье скважины в подвесной колонне в течение трех суток через каждый час.
Вычисляется ежечасовой темп изменения давления на устье скважины в межтрубном пространстве обсадной и внешней подвесной колонн, равный разности показаний манометра за предыдущий и текущий час.
Бесшахтный резервуар считается выдержавшим испытание на герметичность, если темп ежечасового падения давления со временем снижается, стремясь к постоянной величине, а среднее падение давления за час в течение последних 12 часов выдержки не превышает 0,05% испытательного давления.
В случае, если темп ежечасового падения давления со временем снижается, а среднее падение давления в течение последних 12 часов превышает вышеуказанную величину, испытания продолжают до стабилизации темпа падения давления. Окончательное решение о герметичности бесшахтного резервуара принимается по установившемуся темпу падения давления, если он не превышает 0,05% от испытательного давления за час в течение последних 12 часов испытаний.
Особенности эксплуатации подземных хранилищ газа
Этап опытно-промышленной эксплуатации (далее ОПЭ) ПХГ начинается с первой закачки газа в объект хранении и продолжается до выхода хранилища на проектные показатели ОПЭ.
Основными задачами, решаемыми в период ОПЭ, являются: - проведение опытной эксплуатации ПХГ;
- оценка возможности выхода хранилища на проектные показатели и обеспечение его безопасной циклической эксплуатации;
- развитие и дополнение информационной базы данных текущими данными эксплуатации;
- уточнение и совершенствование геологической и технологической модели эксплуатации.
По результатам ОПЭ выполняется анализ ОПЭ, где на основании проведенных наблюдений и исследований дают заключение о дальнейшем развитии хранилища и возможности выхода на утвержденные проектные показатели циклической эксплуатации, в противном случае выполняют коррективы технологического проекта ПХГ.
Этап циклической эксплуатации ПХГ начинается с выхода хранилища на утвержденные проектные показатели и продолжается до консервации (ликвидации) хранилища.
Эксплуатацию наземного оборудования ПХГ осуществляют в соответствии с действующими нормативными документами.
Эксплуатацию объекта хранения газа осуществляют в соответствии с технологическим проектом ПХГ, режимом эксплуатации ПХГ, обеспечением объектного мониторинга недр при наличии информационной базы данных, геологической и технологической модели ПХГ.
Расчет режима эксплуатации ПХГ проводится в соответствии с технологической моделью хранилища на планируемый сезон закачки (отбора) газа, который согласовывается и утверждается в установленном порядке.
Режим эксплуатации ПXГ содержит:
- анализ подготовки хранилища к предстоящему сезону закачки (отбора) газа;
- динамику изменения основных технологических показателей на планируемый период закачки (отбора) газа;
- график зависимости максимальной суточной производительности хранилища от пластового давления в объекте хранения.
При циклической эксплуатации организация (разработчик) технологического проекта ПХГ не реже одного раза в 5 лет разрабатывает обеспечение объектного мониторинга недр при эксплуатации подземных хранилищ газа (далее обеспечение) , согласованное с территориальными органами Проматомнадзора , в котором предусматривает все виды наблюдений и исследований, необходимые для обеспечения безопасной эксплуатации хранилища в соответствии с утвержденными проектными показателями.
Не реже одною раза в 5 лет по результатам работ, проведенных в соответствии с Регламентом, организация (разработчик) выполняет Анализ эксплуатации ПХГ (далее Анализ), где раз разрабатывают рекомендации по обеспечению циклической эксплуатации в соответствии с технологическим проектом ПХГ.
Анализ включает следующие разделы:
- введение, где указывают основание для постановки и выполнении работы, состояние объекта, объем и последовательность выполненных работ, краткое содержание основных разделов и ответственных исполни -телей;
- краткая геолого-гидродинамическая характеристика объекта, состояние изученности, фонд скважин, схема обустройства и основные проектные и достигнутые технологические показатели эксплуатации;
- анализ адекватности геологической и технологической модели ПХГ;
- фактические показатели закачки (отбора) газа по объекту в целом, действующему фонду скважин, водному фактору, выносу песка, состоянию подземного и наземного оборудования;
- анализ показателей закачки (отбора) газа, производительности скважин, сопоставление их с проектными или утвержденными на данный сезон;
- оценка баланса газа, затрат газа на собственные технологические нужды (далее СТН);
результаты работ по контролю герметичности, изменению газонасыщенности, распространению газонасыщенного контура, обводнению эксплуатационных скважин, заколонным и межколонным газопроявлениям, промысловым исследованиям;
- анализ проведенных геофизических, геохимических, газодинамических и других исследований на ПХГ;
- оценка состояния ИБД;
- выводы и предложения, рекомендации по дальнейшей эксплуатации объекта, совершенствованию ИЬД, геологической и технологической модели эксплуатации. По результатам анализа разработчик дает заключение о соответствии проектных и фактических показателей эксплуатации ПХГ и необходимости их корректировки.
При эксплуатации ПХГ осуществляют постоянный расчет (замер) затрат газа на собственные технологические нужды (далее СТН), результаты которых регистрируют и учитывают при ведении баланса газа в объекте хранения.
Ведение баланса газа в объекте хранения (с учетом затрат газа на СТН) осуществляет геологическая служба ПХГ.
Организация, ведущая авторский надзор за эксплуатацией ПХГ, на основе технологической модели осуществляет контроль за балансом газа в газохранилище и оценивает возможные пластовые потери.
При значительном расхождении расчетных и учетных данных объема газа в объекте хранения проводят анализ причин отклонений, разрабатывают мероприятия по их устранению и вносят поправки в систему ведения баланса газа на ПХГ
Скорректированный объем газа в объекте хранения и пластовые потери рассматриваются и утверждаются в установленном порядке.
Энергосбережение на ПХГ осуществляют в соответствии с концепцией энергосбережения на ПХГ и программой энергосбережения на ПХГ.
Раз в год пользователь недр проводит анализ выполнения программы энергосбережения на ПХГ, проводит оценку фактических и планируемых (на следующий год эксплуатации) (TII и рассчитывает показатели энергоэффективности ПХГ по природному газу, тепло и электроэнергии в соответствии с утвержденными методиками и положениями. По результатам анализа разрабатывают мероприятия по энергосбережению на перспективу.
При нарушении герметичности объекта хранения эксплуатацию хранилища приостанавливают до разработки мероприятий по обеспечению безопасной эксплуатации ПХГ (далее мероприятий), согласования с территориальными органами Проматомнадзора и утверждения в установленном порядке.
В мероприятиях приводят анализ возможных причин нарушения герметичности ПХГ, программу необходимых исследований по выявлению причин перетока газа и перечень мероприятий по обеспечению безопасной эксплуатации ПХГ.
Решение о дальнейшей эксплуатации хранилища принимается пользователем недр па основе результатов внедрения мероприятий при наличии согласования Проматомнадзора.