
- •Введение
- •Тема 1. Геолого-физическая характеристика нефтяных и газовых залежей
- •1.1 Общие понятия о нефти и природном газе с точки зрения их генезиса, физики и химии.
- •1.2 Нефть и газ как сложные многокомпонентные системы углеводородов (ув) в различных термобарических условиях. Фазовые состояния и превращения газонефтяных систем.
- •1.3 Общие сведения об осадочно-миграционной теории органического происхождения ув и образования месторождений нефти и природного газа. Понятие о геологических ловушках для ув, типы ловушек.
- •1.4 Минералы и горные породы. Классификация горных пород. Породы-коллекторы нефти и газа (их основные типы и характеристики).
- •1.4.Краткая стратиграфическая характеристика Припятского прогиба.
- •Тема 2 Залежи и месторождения углеводородов
- •2.1 Залежи нефти и природного газа как единичные скопления ув в геологических ловушках. Месторождения нефти и газа.
- •Классификация залежей углеводородов
- •2.3 Пластовые воды залежей ув; расположение пластовых вод относительно нефтегазоносной части залежи.
- •2.4 Запасы нефти и природного газа. Категории запасов. Подсчет запасов нефти и газа объемным методом.
- •Объемный метод подсчета запасов нефти
- •Объемный метод подсчета запасов газа
- •Тема 3. Пластовое давление в залежах ув
- •1 Газ; 2 нефть; 3 вода; 4 заводненная зона пласта; 5 точка замера давления в скважине; h расстояние от точки замера до условной плоскости
- •Тема 4. Физические параметры пластовых жидкостей и учет их изменения при разработке залежей нефти
- •4.2 Физические параметры пластовых вод.
- •Тема 5. Условия эксплуатации нефтяных и газовых скважин
- •5.1 Условие притока флюидов к забоям скважин под действием упругих сил
- •5.2 Стационарные и нестационарные режимы исследования скважин (индикаторная кривая и кривая восстановления давления).
- •Исследование скважин методом установившихся отборов (стационарные режимы исследования)
- •Исследование скважин методом неустановившихся отборов (кривая восстановления давления)
- •5.3 Система «пласт-скважина» и способы эксплуатации скважин; предел фонтанирования скважины. Обводнение добывающих скважин: источники и пути поступления воды. Технологический режим работы скважин.
- •Обводнение добывающих скважин: источники и пути поступления воды.
- •Технологический режим работы скважин.
- •Тема 6. Основные закономерности разработки залежей нефти
- •6.1 Динамика текущего пластового давления в процессе разработки. Заводнение залежи: преимущества и недостатки.
- •Площадное заводнение
- •1 Площади, не охваченные процессом
- •6.3 Стадии разработки нефтяной залежи; характеристика отдельных стадий. Основной период разработки залежи.
- •Тема 7. Основные эксплуатационные характеристики залежей нефти
- •7.1 Термобарическая характеристика залежи. Влияние начальных температуры и давления в залежи и состава ув на возможный ход разработки.
- •7.2 Режимы работы пластов как проявление определенного вида пластовой энергии, под действием которой к забоям скважин движутся пластовые жидкости
- •7.3 Классификация режимов Водонапорный режим
- •Упругий режим
- •Упруговодонапорный режим
- •Газонапорный режим
- •Режим растворенного газа
- •Гравитационный режим
- •Сравнительный анализ режимов
- •Тема 8. Основы проектирования разработки месторождений нефти и газа
- •8.1 Цели и задачи проектирования разработки. Многостадийность проектирования разработки месторождений нефти
- •8.2 Виды проектных документов, их назначение.
- •Тема 9. Объект и система разработки
- •9.1 Выбор объектов по разрезу и площади месторождения. Объединение нескольких продуктивных пластов в один объект разработки; обоснование целесообразности объединения
- •9.2 Понятие о системе разработки нефтяных месторождений. Системы разработки по методу разбуривания месторождения в целом. Системы разработки залежей с естественным напором краевых и подошвенных вод.
- •Системы разработки по методу разбуривания месторождения в целом
- •Системы разработки залежей с естественным напором краевых и подошвенных вод.
- •9.3 Схематизация формы залежи. Схематизация контуров нефтеносности. Схемы размещения добывающих и нагнетательных скважин.
- •9.4 Характеристика основных технологических показателей разработки. Характеристика основных экономических показателей разработки
- •9.5 Проведение гидродинамических расчетов основных показателей разработки
- •9.6 Понятие о рациональной системе разработки. Выбор рационального варианта
- •Тема 10. Основы анализа разработки
- •10.1 Цель и задачи анализа текущего состояния разработки в рамках авторского надзора. Методы проведения анализа.
- •Применение статистических методов и упрощенных методик для анализа и прогноза разработки, оценки эффективности проводимых на залежи геолого-технических мероприятий
- •10.2 Факторы, осложняющие процесс вытеснения нефти водой.
- •Фазовые проницаемости. Кривые относительных фазовых проницаемостей
- •10.3 Различия вязкостей нефти и воды как фактор, осложняющий процесс вытеснения нефти. Параметр безразмерной вязкости μ0, его влияние на характер выработки запасов.
- •10.4 Методы повышения коэффициента нефтеизвлечения (кин).
- •10.5 Рациональное число и размещение проектных скважин. Основной фонд скважин. Резервные скважины.
- •10.6 Расчет процессов нагнетания.
- •Тема 11. Разработка залежей, приуроченных к трещиноватым коллекторам
- •11.1 Контроль и регулирование разработкой нефтяных залежей Контроль за процессом разработки
- •Регулирование процесса разработки (рпр)
- •11.2 Основы компьютерного моделировании строения залежей ув и их разработки
- •Основные виды исходных данных для цифрового геологического моделирования
- •Основные исходные данные для создания гидродинамической модели
- •Тема 12. Разработка газовых и газоконденсатных залежей
- •12.1 Состав природных газов. Классификация природных газов. Классификация газовых залежей и месторождений.
- •12.2 Физические свойства природных газов. Тепловые свойства природных газов. Дросселирование газов. Гидратообразование.
- •12.3 Технологический режим работы газовой скважины. Свободный и абсолютно свободный дебит.
- •Тема 13 Способы эксплуатации газовых скважин
- •Газогидродинамические исследования скважин при установившихся режимах (метод установившихся отборов)
- •Исследования скважин при нестационарных режимах фильтрации
- •Режимы работы газовых пластов
- •Газовый режим
- •Водонапорный режим
- •Размещение скважин при разработке газоконденсатных залежей
- •Определение показателей разработки при газовом режиме для периода нарастающей добычи
- •13.6 Особенности разработки газоконденсатной залежи. Явления обратной конденсации. Особенности разработки газонефтяных и нефтегазовых залежей
- •Особенности разработки нефтегазовых залежей
- •Системы сбора газа на промысле. Промысловая подготовка газа к транспорту
- •Подземное хранение газа
- •Список литературы
- •Содержание
11.2 Основы компьютерного моделировании строения залежей ув и их разработки
Построение трехмерных цифровых геологических моделей в настоящее время уже стало естественной составляющей технологических процессов обоснования бурения скважин и составления планов разработки месторождений углеводородов, включая оценку экономической эффективности предлагаемых геолого-технологических мероприятий. В значительной степени это связано с усложнением строения разрабатываемых месторождений и новыми технологиями добычи, например, бурением горизонтальных скважин.
Появление трехмерного геологического моделирования как самостоятельного направления оказалось возможным вследствие следующих основных факторов:
разработки математических принципов и алгоритмов трехмерного моделирования;
развития смежных областей геологического и геофизического знания – обработки и интерпретации 3D-сейморазведки, сиквенс-стратиграфии, а также трехмерного гидродинамического моделирования;
появления достаточно мощных компьютеров и рабочих станций, позволяющих выполнять сложные математические расчеты с достаточным быстродействием и визуализацией результатов;
разработки коммерческих программ, обеспечивающих цикл
построения трехмерных моделей (загрузка, корреляция, картопостроение, построение кубов ФЕС, визуализация, анализ данных, выдача графики и др.);
накопления обширного опыта двумерного геологического моделирования, подсчета запасов и нефтегазопромысловой геологии.
Развитие программных пакетов геологического моделирования обеспечивается, с одной стороны, появлением новых принципов и алгоритмов 3D-моделирования (нейронные сети, многоточечная статистика – MPS), с другой – расширением функциональности за счет включения и интеграции новых модулей (анализ данных сейсморазведки, сопровождение бурения горизонтальных скважин, апскейлинг). Таким образом, трехмерное цифровое геологическое моделирование продолжает оставаться интересным, увлекательным и экономически эффективным направлением нефтегазовой геологии.
Гидродинамическое моделирование Разработки в области численного гидродинамического моделирования и создания суперкомпьютеров всегда были взаимосвязаны: как только аппаратное обеспечение становилось мощнее, инженеры строили модели, которые были больше или сложней, в результате существующие компьютеры оказывались слишком медленными. Далее совершенствовались компьютеры, и снова усложнялись модели и т. д.
Исследования в численном моделировании начались в конце 50-х годов прошлого столетия как расширение концепции материального баланса. Некоторые фундаментальные концепции и математические методы, разработанные в течение первых двух десятилетий исследований, являются актуальными и сейчас (конечно-разностная дискретизация, IMPES, полнонеявный метод, формулизация моделей композиционной и «черной нелетучей нефти», модели скважин, и др.).
Несмотря на то, что теория численного моделирования была разработана относительно быстро, широкому внедрению моделирования в ежедневную работу инженеров препятствовала недостаточная компьютерная мощность. Так, до начала 80-х годов размеры типичных численных гидродинамических моделей редко превышали нескольких тысяч ячеек. Только, когда модели стали иметь приемлемый уровень детализации, гидродинамическое моделирование стало достаточно точным и могло использоваться в качестве основного инструмента для выполнения проекта разработки месторождений. С появлением мейнфреймов и суперкомпьютеров в 80-х годах и выпуском коммерческих симуляторов месторождений (например, первый релиз ECLIPSE был выпущен в 1983 г.), численное моделирование стало стремительно развиваться.
Начало XXI в. характеризуется экспонентным ростом доступной (и по цене) компьютерной мощности за счет появления параллельных вычислений на многопроцессорных компьютерах и невероятного роста мощности персональных компьютеров (ПК), которое было вызвано индустрией компьютерных приложений и игр.
Доступность массивных вычислительных ресурсов по цене также означает, что инженеры и исследователи могут использовать новые способы эксплуатации этой компьютерной техники.