Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химия ответы на билеты Первый курс Агрономия.docx
Скачиваний:
25
Добавлен:
20.03.2016
Размер:
304.02 Кб
Скачать

1.основные законы химических превращений :

-закон сохранения массы вещества: Закон сохранения массы теоретически был описан в 1748 году, а экспериментально подтверждён в 1756 году русским ученым  М.В. Ломоносовым. Ломоносов определил, что если сосуд с металлом взвесить до и после нагревания, не вскрывая его, то масса останется неизменной.

В 1789 году французский учёный Антуан Лавуазье подтвердил выводы Ломоносова.

Закон сохранения массы веществ формулируется так:

Масса веществ, вступивших в реакцию, равна массе продуктов реакции.

Закон сохранения вещества можно заменить эквивалентным ему законом сохранения массы: масса веществ, вступивших в химическую реакцию, равна массе веществ, образующихся в результате реакции.  Например: в химической реакции: С+О2=СО2 масса веществ, вступивших в реакцию, равна М(С) + М(О2)=12 г/моль+2×16=32 г/моль=44 г/моль,  а масса продукта реакции равна М(СО2)=12+2×16=44 г/моль.  Закон сохранения массы подтвердил, что атомы являются неделимыми и при химических реакциях не изменяются. Молекулы при реакциях обмениваются атомами, но общее число атомов каждого вида не изменяется, и поэтому общая масса веществ в процессе реакции сохраняется.

-закон постоянства состава:

К основным законам химии относится закон постоянства состава:

Всякое чистое вещество независимо от способа его получения всегда имеет постоянный качественный и количественный состав.

Атомно-молекулярное учение позволяет объяснить закон постоянства состава. Поскольку атомы имеют постоянную массу, то и массовый состав вещества в целом постоянен.

Закон постоянства состава впервые сформулировал французский ученый-химик Ж.Пруст в 1808 г.

Например: оксид углерода можно получить по любой из этих реакций:  С+О2=СО2  2СО+О2=2СО2  СаСО3=СаО+СО2  NaHCO3+HCl=NaCl+H2O+CO2  но в чистом оксиде углерода независимо от способа получения всегда содержится 27,29 мас.% С и 72,71 мас.% О. Таким образом, закон постоянства состава утверждает количественную определенность каждого химического соединения. Следует отметить, что обратное утверждение - каждому определенному составу отвечает только одно химическое соединение - неверно. Например: диметиловый эфир и этиловый спирт имеют одинаковый химический состав - С2Н6О, но являются различными химическими соединениями:  СН3-О-СН3 и С2Н5ОН.

2.

Основные законы химических превращений:

-закон Авогадро, и его следствия- Закон Авогадро состава сформулирован в 1811 г итальянский химик Амедео Авогадро.

Закон Авогадро формулируется так:

В равных объёмах любых газов, взятых при одной и той же температуре и при одном и том же давлении, содержится одно и то же число молекул.

Следствие из закона:

1 моль (6,02×1023 молекул – число Авогадро) любого газа при нормальных условиях занимает объем 22,4 л. Эта величина называется молярный объём.

 

Vm = 22,4 л,

 

Нормальными условиями (н.у.) считают температуру 0оС (273 K) и давление 1 атм (760 мм ртутного столба или 101 325 Па).

Пример. Определить число молекул, содержащихся в воде количеством 0,5 моль.

 

N(H2O) = NA·× ν(H2O) = 6,02·× 1023 моль-1·× 0,5 моль = 3,01·× 1023.

Постоянная авогадро NA =6,02*1023 частиц/моль.

 

Молекулярная масса Mr – отношение массы молекулы к 1/12 части массы атома углерода С.

Молярная масса M – отношение массы вещества m (г)  к его количеству n, выражается в единицах г/моль.

 

M=m/n,

 m=M*n и n=m/M.

Из закона Авогадро следует, что массы двух газов (m1 и m2), взятых в одинаковых объёмах, должны относится друг к другу, как их как их молекулярные массы или как численно равные их молярные массы (M1 и M2):

 

.

 

Отношение массы одного газа к массе другого газа, взятого при тех же условиях (температуре и давлении), называется относительной плотностью первого газа по второму.

 

,

откуда

М1=DM2.

 

Взаимосвязь молярной массы, молярного объёма, числа Авогадро и количества вещества:

 

,

 

Для приведения объёма газа к нормальным условиям используется уравнение, объединяющее законы Бойля-Мариотта и Гей-Люссака:

 

,

 

где V – объём газа при давлении Р и температуре Т.

Молярные массы можно вычислить пользуясь уравнением Менделеева-Клапейрона:

 

,

где:

Р – давление газа, Па;

V – объём газа, м3;

m – масса вещества, г;

М – молярная масса вещества;

Т – абсолютная температура;

R – универсальная газовая постоянная 8,314 Дж/(моль×К).

Пример. Какой объём занимает 0,2 моль N2 при н.у.?

Дано:

Vm = 22,4 л/моль

ν(N2) = 0,2 моль

Найти:

V(N2)

Решение:

1. Используем формулу

,

откуда

,

Ответ: V(N2) = 4,48 л.

-закон эквивалентов-

Эквивалент вещества или Эквивалент — это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в кислотно-основных (ионообменных) химических реакциях или электрону в окислительно-восстановительных реакциях[1][2].

Например, в реакции  эквивалентом будет реальная частица — ион , а в реакции  эквивалентом будет мнимая частица .

Под эквивалентом вещества также часто подразумевается количество эквивалентов вещества или эквивалентное количество вещества — число моль вещества, эквивалентное одному молькатионов водорода в рассматриваемой реакции.

Эквивалентная масса — это масса одного эквивалента данного вещества.

Эквивалентная молярная масса вещества

Молярная масса эквивалентов обычно обозначается как  или .

Молярная масса эквивалентов вещества — масса одного моля эквивалентов, равная произведению фактора эквивалентности на молярную массу этого вещества.

Фактор эквивалентности

Отношение эквивалентной молярной массы к его собственной молярной массе называется фактором эквивалентности (обозначается обычно как ).

Число эквивалентности

Число эквивалентности  представляет собой небольшое положительное целое число, равное числу эквивалентов некоторого вещества, содержащихся в 1 моль этого вещества. Фактор эквивалентности  связан с числом эквивалентности следующим соотношением: 

Например, в реакции:

Эквивалентом является мнимая частица . Число  есть фактор эквивалентности в данном случае равно .

вещество

реакция

простое *

сложное

ОВР (Окислительно-восстановительная реакция)

обменная

число атомов в формульной единице

число катионов (анионов)

число атомов элемента, поменявших степень окисления

число замещенных частиц в формульной единице

характерная валентность элемента

фиктивный заряд на катионе (анионе)

число принятых (отданных) элементом электронов

фиктивный заряд на частице

 — для инертных газов 

Фактор эквивалентности помогает сформулировать закон эквивалентности.

Закон эквивалентов

В результате работ И. В. Рихтера (1792—1800) был открыт закон эквивалентов:

все вещества реагируют и образуются в эквивалентных отношениях.

формула, выражающая Закон эквивалентов: m1Э2=m2Э1

3.строение атома.

атомные ядра состоят из положительно заряженных частиц - протонов и незаряженных частиц - нейтронов. Протон имеет заряд, равный заряду электрона, но со знаком плюс, его масса практически равна массе нейтрона. Отметим, что в химии принято выражать заряды ионов в единицах заряда электрона с соответствующим знаком, например Н+, Mg2+, СГ. Таким образом, число протонов в ядре определяет его заряд и порядковый номер, а сумма чисел протонов и нейтронов - округленную общую массу ядра в атомных единицах, или массовое число атома. Очевидно, что в электронейтральном атоме число протонов в атомном ядре равно числу электронов в электронной оболочке атома. Электрон имеет двойственную (корпускулярно-волновую) природу. Благодаря волновым свойствам электроны в атоме могут иметь только строго определенные значения энергии, которые зависят от расстояния до ядра. Электроны, обладающие близкими значениями энергии образуют энергетический уровень. Он содержит строго определенное число электронов - максимально 2n2. Энергетические уровни подразделяются на s-, p-, d- и f- подуровни; их число равно номеру уровня.

Атомный номер элемента. изотопы

Порядковый номер элемента принято называть его атомным номером и обозначать буквой Z. Атомный номер лежит в основе систематизации химических элементов и определяет их положение в периодической системе.

При определенном атомном номере, т.е. при определенном числе протонов, в ядре могут находиться разные числа нейтронов, поэтому могут существовать отличающиеся по массе разновидности атомов одного и того же элемента - изотопы.

Например, природный водород представляет собой смесь изотопов с массовыми числами 1 и 2, а.

Клетка периодической таблицы

В ядре атома урана 92 протона, а в его электронной оболочке - 92 электрона

В периодической таблице, элементы расположены в порядке увеличения заряда ядра, а в отдельных клеточках таблицы принято приводить средневзвешенные атомные массы, поэтому они часто сильно отличаются от целочисленных.

4.переодический закон Менделеева.- 6.S,P,D,F,- элементы и их место в периодической системе.

Основной закон химии - Периодический закон был открыт Д.И. Менделеевым в 1869 году.

Периодический закон в формулировке Д.И. Менделеева: Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

Вертикальные столбцы таблицы называют группами. Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется наглавные и побочные подгруппы.

В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых  валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n — 1) d- подуровне (или (n — 2) f- подуровне).

Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III — VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

Высшая валентность элемента (за исключением O, F, элементов подгруппы меди и восьмой группы) равна номеру группы, в которой он находится. Горизонтальные ряды таблицы называют периодами. Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n — одинаково). Первый период отличается от других тем, что там находятся всего 2 элемента: водород H и гелий He.

Во втором периоде находятся 8 элементов (Li — Ne). Литий Li – щелочной металл начинает период, а замыкает его благородный газ неон Ne.

В третьем периоде, также как и во втором находятся 8 элементов (Na — Ar). Начинает период щелочной металл натрий Na, а замыкает его благородный газ аргон Ar.

В четвёртом периоде находятся 18 элементов (K — Kr) – Менделеев его обозначил как  первый большой период. Начинается он также с щелочного металла Калий, а заканчивается инертным газом криптон Kr. В состав больших периодов входят переходные элементы (Sc — Zn) — d-элементы.

В пятом  периоде, аналогично четвертому находятся 18 элементов (Rb — Xe) и структура его сходна с четвёртым. Начинается он также с щелочного металла рубидий Rb, а заканчивается инертным газом ксенон Xe. В состав больших периодов входят переходные элементы (Y — Cd) — d-элементы.

Шестой период состоит из 32 элементов (Cs — Rn). Кроме 10 d-элементов (La, Hf — Hg) в нем находится ряд из 14 f-элементов(лантаноиды)- Ce — Lu

Седьмой период не закончен. Он начинается с Франций Fr, можно предположить, что он будет содержать, также как и шестой период, 32 элемента. Но найдено пока только 24 (до элемента с Z = 110). Сюда входят 14 f-элементов, которые относятся к  актиноидам.

5. структура периодической системы Менделеева. тоже что и в 4 и в 6.

Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Период — это горизонтальный ряд элементов, расположенных в порядке возрастания заряда их атомов; атомы элементов одного  периода имеют одинаковое число занятых электронных слоев.

Малые периоды (первый, второй и третий) состоят из одного горизонтального ряда. В первом периоде содержится 2 элемента

(водород и гелий), во втором и третьем — по 8 элементов.

Большие периоды ( с четвертого по седьмой) состоят из двух горизонтальных рядов. Четвертый и пятый периоды содержат по 18 элементов, шестой — 32, а седьмой период не завершен.

  Группа — это вертикальный  столбец элементов, атомы которых имеют одинаковое число валентных электронов. Что такое валентные электроны, мы будем рассматривать позднее.

Каждая группа состоит из двух подгрупп: главной (А) и побочной (В).

Главная подгруппа содержит элементы малых и больших периодов.

Побочная подгруппа содержит элементы только больших периодов.

7.ковалентная химическая связь: неполярная, полярная и донорно-акцепторная.

Химическая связь - это взаимодействие двух атомов, осуществляемое путем обмена электронами. При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа. Различают следующие виды химической связи: ковалентная (полярная и неполярная; обменная и донорно-акцепторная), ионнаяводородная и металлическая.

Если двухатомная молекула состоит из атомов одного элемента, то электронное облако распределяется в пространстве симметрично относительно ядер атомов. Такаяковалентная связь называется неполярной. Если ковалентная связь образуется между атомами различных элементов, то общее электронное облако смещено в сторону одного из атомов. В этом случае ковалентная связь является полярной.

КОВАЛЕНТНАЯ СВЯЗЬ

 

Осуществляется за счет электронной пары, принадлежащей обоим атомам. Различают обменный и донорно-акцепторный механизм образования ковалентной связи.

 

1)     Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару:

 

H + H ® H : H

 

®

 

2)     Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь;

 

®

 

Два атома могут обобществлять неcколько пар электронов. В этом случае говорят о кратных связях:

 

®

(или NºN) – тройная связь

 

Если электронная плотность расположена симметрично между атомами, ковалентная связь называется неполярной.

Если электронная плотность смещена в сторону одного из атомов, то ковалентная связь называется полярной.

Полярность связи тем больше, чем больше разность электроотрицательностей атомов.

 

Электроотрицательность - это способность атома притягивать электронную плотность от других атомов. Самый электроотрицательный элемент - фтор, самый электроположительный - франций.

Донорно-акцепторное взаимодействие — перенос заряда между молекулами донора и акцептора без образования между ними химической связи (обменный механизм); или передача неподеленной электронной пары от донора к акцептору, приводящей к образованию связи (донорно-акцепторный механизм).

Атомы со свободными (несвязанными) электронами являются донорами электронов при образовании донорно-акцепторной химической связи. Их партнерами, в первую очередь, становятся  это те атомы, чьи оболочки содержат менее 8 электронов. Это  атомы в молекулах, образованных элементами 2-го и 3-го периодов (с числом электронов во внешнем слое менее 4). 

Атомы натрия (Na), магния (Mg) и алюминия (Al) после образования максимального числа ковалентных связей, к примеру, после образования молекул NaF, MgF2, AlF3 содержат соответственно 2, 4 и 6 электронов во внешней оболочке. Внешние оболочки атомов Na, Mg и Al имеют менее 8 электронов, т.е.  остаются ненасыщенными.

8. насыщаемость и направленность ковалентной связи.

Насыщаемость ковалентной связи обусловлена ограниченными валентными возможностями атомов, т.е. их способностью к образованию строго определенного числа связей, которое обычно лежит в пределах от 1 до 6. Общее число валентных орбиталей в атоме, т.е. тех, которые могут быть использованы для образования химических связей, определяет максимально возможную валентность элемента. Число уже использованных для этого орбиталей определяет валентность элемента в данном соединении.

Направленность ковалентной связи является результатом стремления атомов к образованию наиболее прочной связи за счет возможно большей электронной плотности между ядрами. Это достигается при такой пространственной направленности перекрывания электронных облаков, которая совпадает с их собственной. Исключение составляют s-электронные облака, поскольку их сферическая форма делает все направления равноценными. Для p- и d-электронных облаков перекрывание осуществляется вдоль оси, по которой они вытянуты, а образующаяся при этом связь называется σ-связью. σ-Связь имеет осевую симметрию, и оба атома могут вращаться вдоль линии связи, т.е. той воображаемой линии, которая проходит через ядра химически связанных атомов.

После образования между двумя атомами σ-связи для остальных электронных облаков той же формы и с тем же главным квантовым числом * остается только возможность бокового перекрывания по обе стороны от линии связи. В результате образуется π-связь. Она менее прочна, чем σ-связь: перекрывание происходит диффузными боковыми частями орбиталей. Каждая кратная связь (например, двойная или тройная) всегда содержит только одну σ-связь. Число σ-связей, которые образует центральный атом в сложных молекулах или ионах, определяет для него значение координационного числа. Например, в молекуле NH3 и ионе NH4+ для атома азотаоно равно трем и четырем. Образование σ-связей фиксирует пространственное положение атомов относительно друг друга, поэтому число σ-связей и углы между линиями связи, которые называются валентными углами, определяют пространственную геометрическую конфигурацию молекул.

При оценке степени перекрывания электронных облаков следует учитывать знаки волновых функций * электронов. При перекрывании облаков с одинаковыми знаками волновых функций электронная плотность в пространстве между ядрами возрастает. В этом случае происходит положительное перекрывание, приводящее к взаимному притяжению ядер. Если знаки волновых функций противоположны, то плотность электронного облака уменьшается (отрицательное перекрывание), что приводит к взаимному отталкиванию ядер.

9.Ионная, водородная и металлическая химическая связь.

ИОННАЯ СВЯЗЬ

 Ионы - это заряженные частицы, в которые превращаются атомы в результате отдачи или присоединения электронов.

 

®

(фторид натрия состоит из ионов натрия Na+ и фторид-ионов F-)

 

Если разность электроотрицательностей атомов велика, то электронная пара, осуществляющая связь, переходит к одному из атомов, и оба атома превращаются в ионы.

Химическая связь между ионами, осуществляемая за счет электростатического притяжения, называется ионной связью.

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами.

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором. Атом щелочного металла легко теряет электрон, а атом галогена - приобретает. В результате этого возникает катион натрия и хлорид-ион. Они образуют соединение за счет электростатического притяжения между ними.

Взаимодействие между катионами и анионами не зависит от направления, поэтому о ионной связи говорят как о ненаправленной. Каждый катион может притягивать любое число анионов, и наоборот. Вот почему ионная связь является ненасыщенной. Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла. Поэтому "молекулой" ионного соединения следует считать весь кристалл.

Химическая связь - это взаимодействие двух атомов, осуществляемое путем обмена электронами. При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа. Различают следующие виды химической связи: ковалентная (полярная и неполярная; обменная и донорно-акцепторная), ионнаяводородная и металлическая.

ВОДОРОДНАЯ СВЯЗЬ

 

Водородная связь - зто связь между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом другой молекулы. Водородная связь имеет частично электростатический, частично донорно-акцепторный характер.

 

 

Водородная связь изображена точками

 

Наличие водородных связей объясняет высокие температуры кипения воды, спиртов, карбоновых кислот.

МЕТАЛЛИЧЕСКАЯ СВЯЗЬ

 

Валентные электроны металлов достаточно слабо связаны со своими ядрами и могут легко отрываться от них. Поэтому металл содержит ряд положительных ионов, расположенных в определенных положениях кристаллической решетки, и большое количество электронов, свободно перемещающихся по всему кристаллу. Электроны в металле осуществляют связь между всеми атомами металла.

10. химическое равновесие. принцип Ле-Шателье.

Химическим равновесием называется такое состояние химической системы, при котором количества исходных веществ и продуктов не меняются со временем.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СМЕЩЕНИЕ РАВНОВЕСИЯ:

изменение концентраций реагентов или продуктов,

изменение давления,

изменение температуры,

внесение катализатора в реакционную среду.

Принцип Ле Шателье

При известных ΔH реакции или при Δn ≠ 0 на химическое равновесие можно воздействовать изменением температуры или давления. Химическое равновесие может быть смещено изменением концентраций реагентов. Другими словами, равновесие можно сместить внешним воздействием, руководствуясь принципом Ле Шателье: если на равновесную систему оказывать внешнее воздействие, то равновесие смещается в сторону, противодействующую этому воздействию.

Влияние температуры. Для реакций, идущих с уменьшением энтальпии (экзотермических), повышение температуры будет препятствовать протеканию прямого процесса, то есть смещать реакцию в сторону исходных веществ. Эндотермические реакции при этом будут смещаться в сторону конечных продуктов. Например, при обычных условиях реакция N2 + O2 не идет (ΔH > 0), но повышение температуры может сделать эти реакцию осуществимой. Реакция CO + 1/2O2 = CO2, ΔH < 0 с повышением температуры будут смещаться в сторону исходных веществ.

Влияние давления. Если реагируют газообразные вещества, то при неизменном числе молей начальных и конечных реагентов повышение общего давления не приведет к смещению равновесия. Если число молей при реакции меняется, то изменение общего давления приведет к смещению равновесия. В частности, реакция 2CO + O2 = 2CO2, протекающая с уменьшением Δn, при повышении общего давления сместится в сторону образования СO2.

Влияние концентраций. В тех реакциях, в которых лучше оперировать концентрациями (реакции в растворах), увеличение концентраций исходных веществ приводит к смещению равновесия в сторону конечных продуктов и наоборот. Так, в реакции этерификации (образование сложного эфира) 

увеличение концентрации уксусной кислоты или этанола увеличивает выход этилацетата, а добавление в систему воды приводит к омылению, т. е. образованию исходных продуктов.

11.понятие о катализе.

Катализатором называется вещество, изменяющее скорость химической реакции, но остающееся химически неизменным по окончании реакции.

Одни катализаторы ускоряют реакцию, другие, называемые ингибиторами, замедляют ее протекание. Например, добавление в качестве катализатора небольшого количества МnO2 к пероксиду водорода Н2О2 вызывает бурное разложение:

2 Н2O2 –(MnO2) 2 Н2O + O2.

В присутствии небольших количеств серной кислоты наблюдается уменьшение скорости разложения Н2О2. В этой реакции серная кислота выступает в роли ингибитора.

В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества или образует самостоятельную фазу, различают гомогенный и гетерогенный катализ.

Гомогенный катализ

В случае гомогенного катализа реагирующие вещества и катализатор находятся в одной фазе, например, газообразной. Механизм действия катализатора основан на том, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений.

Рассмотрим механизм действия катализатора. В отсутствие катализатора реакция

A + B = AB

Протекает очень медленно. Катализатор образует с исходными веществами (например, с веществом В) реакционноспособный промежуточный продукт:

B + K = BK,

который энергично реагирует с другим исходным веществом с образованием конечного продукта реакции:

ВК + А = АВ + К.

Гомогенный катализ имеет место, например, в процессе окисления оксида серы(IV) в оксид серы(VI), который происходит в присутствии оксидов азота.

Гомогенная реакция

2 SO2 + O2 = 2 SO3

в отсутствии катализатора идет очень медленно. Но при введении катализатора (NO) происходит образование промежуточного соединения (NO2):

O2 + 2 NO = 2 NO2,

которое легко окисляет SO2:

NO2 + SO2 = SO3 + NO.

Энергия активации последнего процесса очень мала, поэтому реакция протекает с высокой скоростью. Таким образом, действие катализаторов сводится к уменьшению энергии активации реакции.

Гетерогенный катализ

При гетерогенном катализе катализатор и реагирующие вещества находятся в различных фазах. Катализатор обычно находится в твердом, а реагирующие вещества в жидком или газообразном состояниях. При гетерогенном катализе ускорение процесса обычно связано с каталитическим действием поверхности катализатора.

Катализаторы отличаются избирательностью (селективностью) действия. Так, например, в присутствии катализатора оксида алюминия Al2O3 при 300oС из этилового спирта получают воду и этилен:

С2Н5OН –(Al2O3) С2Н4 + Н2O.

При той же температуре, но в присутствии в качестве катализатора меди Cu, происходит дегидрирование этилового спирта:

С2Н5OН –(Cu) СН3СНО + Н2.

Небольшие количества некоторых веществ снижают или даже полностью уничтожают активность катализаторов (отравление катализаторов). Такие вещества называются каталитическими ядами. Например, кислород вызывает обратимое отравление железного катализатора при синтезе NH3. Восстановить активность катализатора можно путем пропускания очищенной от кислорода свежей смеси азота и водорода. Сера вызывает необратимое отравление катализатора при синтезе NH3. Его активность пропусканием свежей смеси N22 восстановить уже не удается.

12.способы выражения концентрации раствора.

Концентрацию веществ в растворах можно выразить разными способами.  Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.

Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m :

w(B)= m(B) / m

Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества – CaCl2 в воде равна 0,06 или 6%. Это означает,что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г.

Пример Сколько грамм сульфата натрия и воды нужно для приготовления 300 г 5% раствора?

Решение m(Na2SO4) = w(Na2SO4) / 100 = (5 · 300) / 100 = 15 г

где w(Na2SO4)) – массовая доля в %,  m - масса раствора в г m(H2O) = 300 г - 15 г = 285 г.

Таким образом, для приготовления 300 г 5% раствора сульфата натрия надо взять 15 г  Na2SO4) и 285 г воды.

Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.

C(B) = n(B) / V = m(B) / (M(B) · V),

 где М(B)  - молярная масса растворенного вещества г/моль.

Молярная концентрация измеряется в моль/л и обозначается "M". Например, 2 M NaOH - двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).

Пример Какую массу хромата калия K2CrO4 нужно взять для приготовления 1,2 л 0,1 М раствора?

Решение  M(K2CrO4) = C(K2CrO4) · V · M(K2CrO4) = 0,1 моль/л · 1,2 л · 194 г/моль » 23,3 г.

Таким образом, для приготовления 1,2 л 0,1 М раствора нужно взять 23,3 г K2CrO4 и растворить в воде, а объём довести до 1,2 литра.

Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют моляльностью раствора.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора. Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода. Эоснования = Моснования / число замещаемых в реакции гидроксильных групп Экислоты = Мкислоты / число замещаемых в реакции атомов водорода Эсоли = Мсоли / произведение числа катионов на его заряд Пример Вычислите значение грамм-эквивалента (г-экв.) серной кислоты, гидроксида кальция и сульфата алюминия.

Э H2SO4 = М H2SO4 / 2 = 98 / 2 = 49 г  Э Ca(OH)2 = М Ca(OH)2 / 2 = 74 / 2 = 37 г Э Al2(SO4)3 = М Al2(SO4)3 / (2· 3) = 342 / 2= 57 г

Величины нормальности обозначают буквой "Н". Например, децинормальный раствор серной кислоты обозначают "0,1 Н раствор H2SO4". Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой. Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4.

Пример Рассчитайте молярность и нормальность 70%-ного раствора H2SO4 (r = 1,615 г/мл).

Решение Для вычисления молярности и нормальности надо знать число граммов H2SO4в 1 л раствора. 70% -ный раствор H2SO4 содержит 70 г H2SO4 в 100 г раствора. Это весовое количество раствора занимает объём

V = 100 / 1,615 = 61,92 мл

Следовательно, в 1 л раствора содержится 70 · 1000 / 61,92 = 1130,49 г H2SO4  Отсюда молярность данного раствора равна: 1130,49 / М (H2SO4) =1130,49 / 98 =11,53 M  Нормальность этого раствора (считая, что кислота используется в реакции в качестве двухосновной) равна 1130,49 / 49 =23,06 H

Пересчет концентраций растворов из одних единиц в другие

 При пересчете процентной концентрации в молярную и наоборот, необходимо помнить, что процентная концентрация рассчитывается на определенную массу раствора, а молярная и нормальная - на объем, поэтому для пересчета необходимо знать плотность раствора. Если мы обозначим: с - процентная концентрация; M - молярная концентрация; N - нормальная концентрация; э - эквивалентная масса, r - плотность раствора; m - мольная масса, то формулы для пересчета из процентной концентрации будут следующими:

M = (c · p · 10) / m N = (c · p · 10) / э

Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную.

Пример  Какова молярная и нормальная концентрация 12%-ного раствора серной кислоты, плотность которого р = 1,08 г/см3?

Решение Мольная масса серной кислоты равна 98. Следовательно,

m(H2SO4) = 98 и э(H2SO4) = 98 : 2 = 49.

Подставляя необходимые значения в формулы, получим: а)  Молярная концентрация 12% раствора серной кислоты равна

M = (12 · 1,08 · 10) / 98 = 1,32 M

б)  Нормальная концентрация 12% раствора серной кислоты равна

N = (12 ·1,08 ·10) / 49 = 2,64 H.

Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н. раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации. Для пересчета из одной концентрации в другую можно использовать формулы:

M = (N · Э) / m N = (M · m) / Э

Пример Нормальная концентрация 1 М раствора серной кислоты

N = (1 · 98) / 49 = 2 H.

Пример Молярная концентрация 0,5 н. Na2CO3

M  = (0,5· 53) / 106 = 0,25 M.

Смешали m1 граммов раствора №1 c массовой долей вещества w1 и m2 граммов раствора №2 c массовой долей вещества w2 . Образовался раствор (№3) с массовой долей растворенного вещества w3 . Как относятся друг к другу массы исходных растворов?

Решение Пусть w1 > w2 , тогда w1 > w3 > w2 . Масса растворенного вещества в растворе №1 составляет w1 · m1, в растворе №2 – w2 · m2. Масса образовавшегося раствора (№3) – (m1 – m2). Сумма масс растворенного вещества в растворах №1 и №2 равна массе этого вещества в образовавшемся растворе (№3):

1 · m1 + w 2 · m2 = w3· (m1 + m2) w1 · m1 + w 2 · m2 = w3 · m1 + w3 · m2  w 1 · m1 – w3 · m1 = w3 · m2 – w2 · m2  (w1– w3) · m1 = (w3– w2) · m2  m1 / m2 = (w3– w2 ) / (w1– w3)

Таким образом, массы смешиваемых растворов m1 и m2 обратно пропорциональны разностям массовых долей w1 и w2 смешиваемых растворов и массовой доли смеси w3. (Правило смешивания).

Для облегчения использования правила смешивания применяют правило креста :

m1 / m2 = (w3 – w2) / (w1 – w3)

Для этого по диагонали из большего значения концентрации вычитают меньшую, получают (w1 – w3), w1 > w3 и (w3 – w2), w3 > w2. Затем составляют отношение масс исходных растворов  m1 / m2 и вычисляют.

Пример Определите массы исходных растворов с массовыми долями гидроксида натрия 5% и 40%, если при их смешивании образовался раствор массой 210 г с массовой долей гидроксида натрия 10%.

5 / 30 = m1 / (210 - m1)  1/6 = m1 / (210 – m1) 210 – m1 = 6m1 7m1 = 210  m1 =30 г;  m2 = 210 – m1 = 210 – 30 = 180 г

13. теория электролитической диссоциации.

Теория электролитической диссоциации

( С. Аррениус, 1887г. )

 

1.      При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2.      Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).

3.      Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4.      Степень электролитической диссоциации (a) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n) к общему числу молекул, введенных в раствор (N).

 

a = n / N                     0<a<1

 Механизм электролитической диссоциации ионных веществ

 

При растворении соединений с ионными связями (например, NaCl) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.

Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.

Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

Механизм электролитической диссоциации полярных веществ

 Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например, HCl), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

 Электролиты и неэлектролиты

 Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H2O), хотя он является основным участником.

 

CaCl « Ca2+ + 2Cl-

KAl(SO4)2 « K+ + Al3+ + 2SO42-

HNO3 « H+ + NO3-

Ba(OH)2  « Ba2+ + 2OH-

 Из электронейтральности молекул вытекает, что суммарный заряд катионов и анионов должен быть равен нулю.

Например, для

Al2(SO4)3 –– 2 • (+3) + 3 • (-2) = +6 - 6 = 0

KCr(SO4)2 –– 1 • (+1) + 3 • (+3) + 2 • (-2) = +1 + 3 - 4 = 0

14. степень диссоциации. сильные и слабые электролиты. константа диссоциации.

Сильные электролиты

 Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO4, H2SO4,HNO3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)2,Sr(OH)2,Ca(OH)2).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

 Слабые электролиты

 Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

 К слабым электролитам относятся:

1)     почти все органические кислоты (CH3COOH, C2H5COOH и др.);

2)     некоторые неорганические кислоты (H2CO3, H2S и др.);

3)     почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);

4)     вода.

Они плохо (или почти не проводят) электрический ток.

СH3COOH « CH3COO- + H+

Cu(OH)2 « [CuOH]+ + OH(первая ступень)

[CuOH]+ « Cu2+ + OH(вторая ступень)

H2CO3 « H+ + HCO(первая ступень)

HCO3« H+ + CO32- (вторая ступень)

Неэлектролиты

 

Вещества, водные растворы и расплавы которых не проводят электрический ток. Они содержат ковалентные неполярные или малополярные связи, которые не распадаются на ионы.

Электрический ток не проводят газы, твердые вещества (неметаллы), органические соединения (сахароза, бензин, спирт).

 

Степень диссоциации. Константа диссоциации

 

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c) и составу молекулы электролита (стехиометрическим индексам), например:

 

       c H2SO4  «  

 2c          c 2H+ SO42-

 

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации (a) - отношение числа распавшихся на ионы молекул (n) к общему числу растворенных молекул (N):

 

a = n / N

 

и выражается в долях единицы или в % (a = 0,3 – условная граница деления на сильные и слабые электролиты).

 

Пример

Определите мольную концентрацию катионов и анионов в 0,01 М растворах KBr, NH4OH, Ba(OH)2, H2SO4 и CH3COOH.

Степень диссоциации слабых электролитов a = 0,3.

 

Решение

KBr, Ba(OH)2 и H2SO4 - сильные электролиты, диссоциирующие полностью (a = 1).

 

KBr «  K+ + Br-

[K+] = [Br-] = 0,01 M

 

Ba(OH)2 « Ba2+ + 2OH-

[Ba2+] = 0,01 M

[OH-] = 0,02 M

 

H2SO4 « 2H+ + SO4

[H+] = 0,02 M

[SO42-] = 0,01 M

 

NH4OH и CH3COOH – слабые электролиты (a = 0,3)

 

NH4OH+4 + OH-

[NH+4] = [OH-] = 0,3 • 0,01 = 0,003 M

 

CH3COOH « CH3COO+ H+

[H+] = [CH3COO-] = 0,3 • 0,01 = 0,003 M

 

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H2O) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

 

Пример

Определите концентрацию недиссоциированных молекул и ионов в 0,1 М раствора NH4OH, если степень диссоциации равна 0,01.

 

Решение

Концентрации молекул NH4OH, которые к моменту равновесия распадутся на ионы, будет равна ac. Концентрация ионов NH4- и OH- - будет равна концентрации продиссоциированных молекул и равна ac (в соответствии с уравнением электролитической диссоциации)

 

NH4OH

«

NH4+

+

OH-

c - ac

 

ac

 

ac

 

[N+H4] = [OH]= ac = 0,01 • 0,1 = 0,001 моль/л

[NH4OH] = c - ac = 0,1 – 0,001 = 0,099 моль/л

 

Константа диссоциации (KD) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше KD, тем больше концентрация ионов в растворе.

Диссоциации слабых многоосновных кислот или многокислотных оснований протекают по ступеням, соответственно для каждой ступени существует своя константа диссоциации:

 

Первая ступень:

H3PO4 « H+ + H2PO4-

KD1 = ([H+][H2PO4-]) / [H3PO4] = 7,1 • 10-3

 

Вторая ступень:

H2PO4- « H+ + HPO42-

KD2 = ([H+][HPO42-]) / [H2PO4-] = 6,2 • 10-8

 

Третья ступень:

HPO42- « H+ + PO43-

KD3 = ([H+][PO43-]) / [HPO42-] = 5,0 • 10-13

 

KD1 > KD2 > KD3

15.ионное произведение воды. водородный показатель.

 Вода является слабым электролитом и  диссоциирует  по  уравнению:   H2O ó H+ + OH-. Выражение для

константы диссоциации  имеет вид:     Кдис [H+]рав [OH-]рав  =1,8 10-16

                                                                                                    [H2O ]рав.

Значение Кдис  воды определили экспериментально по измерению удельной электропроводности  при Т = 25оС.   Чистая вода практически не проводит электрический ток, т.е. άдис(H2O) << 1,  поэтому  можно принять, что

 [H2O ]рав = [H2O]нач.  Рассчитаем молярную концентрацию чистой воды, зная, что 1л воды  весит 1 кг (ρ =1кг/л):

                См(H2O) =          m (H2O)           =         1000 г                    =  55,6 моль/ л.

                                  M (H2O) V (H2O)          18 г/моль 1 л       

Подставим полученное значение См(H2O) в уравнение для Крав::

Крав * 55,6  = Кw   = [H+] [OH-] = 10-14 , где Кw  – ионное произведение воды.

     В чистой воде   [H+] [OH-] = 1 10-14 , тогда  [H+] = [OH-] = 10-7 моль/л.

     В водных растворах кислот   [H+] > [OH-]  или  [H+] > 7 моль/л, среда кислая.

     В  водных растворах щелочей и оснований [H+] < [OH-], [H+] < 7 моль/л, среда основная или щелочная.

     При растворении в воде любых по природе веществ остается неизменным  -  [H+] [OH-] = 1 10-14  .

     Для удобства выражения реакции среды водных растворов был введен специальный термин, который назвали водородным показателем (рН).  рН – отрицательный десятичный логарифм молярной концентрации ионов водорода:    

рН = - lg [H+].

Иногда пользуются также показателем  рОН – отрицательный десятичный логарифм молярной концентрации ионов гидроксила.                                                     рОН = - lg [ОH-]

                                                В нейтральной среде     рН = 7 ;        рОН = 7,    рН  + рОН = 14

                                                В кислой среде              рН < 7  ;        рОН < 7,    рН  + рОН = 14

                                                В щелочной среде         pH > 7  ;        рОН < 7,    рН  + рОН = 14

 

 

Шкала рН

0―――――――――――――――――――7―――――――――――――――――――14

                          ←――   кислая среды                                   нейтральная среда                                         щелочная среда    ――→

                 растворы кислот                                                         чистая вода                                         растворы оснований, щелочей

     Кислотность и щелочность (рН) является важнейшей характеристикой всех водных растворов и естественных водных объектов (реки, озера, моря, океаны ). рН контролирует скорость  многих химических, биологических и биохимических процессов, играет важную роль в медицине, в технологии пищевой и перерабатывающей промышленности.

      Пример 1  Рассчитайте рН растворав 500 мл которого  содержится 0,245 г серной кислоты. Степень диссоциации кислоты равна 1.

      Решение: Уравнение диссоциации кислоты: H2SO4 <=> 2H+ + SO4-2

     Выражение для  расчета рН:       рН = -lg C(H+),   где   C(H+) = n (H+άдис * CM (кислоты).

    Рассчитаем CM (кислоты) = 0,245 / 98 0,5 = 0,05 моль/л

    Тогда рН = -lg  ( 1 * 2 0,05) =  -lg 0,1 = 1.

Пример 2  Рассчитайте рН 5,6% раствора КОНстепень диссоциации  щелочи в растворе составляет  0,9. Плотность  раствора равна 1,02 мл/л.

      Решение: Уравнение диссоциации щелочи: КОН <=> К+ + ОН-

     Выражение для  расчета рН в растворах щелочей :       рН = 14 – рОН = 14 –  (-lg  (ОH-άдис *CM (КОН)).

      Рассчитаем CM (КОН) = 12 * 1,02 / 56 0,1 = 1,02 моль/л

     Тогда рН = 14 -lg  ( 0,9 * 1 1,02) = 13.

16.гидролиз солей. (определение, типы)

Типы гидролиза солей

Химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и сопровождающееся изменением рН раствора, называетсягидролизом солей.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Тип гидролиза соли зависит от природы основания и кислоты,  образующих соль. Возможны 3 типа гидролиза солей.

Гидролиз по аниону идет, если соль образована катионом сильного основания и анионом слабой кислоты.

Например, соль СН3СООNa образована сильным  основанием NaOH и слабой одноосновной кислотой СН3СООН. Гидролизу подвергается ион слабого электролита СН3СОО–.

Ионно-молекулярное уравнение гидролиза соли:

СН3СОО– + НОН « СН3СООН + ОН–

Ионы Н+ воды связываются с анионами СН3СОО– в слабый электролит СН3СООН, ионы ОН– накапливаются в растворе, создавая щелочную среду (рН>7).

Молекулярное уравнение гидролиза соли:

CH3COONa + H2O « CH3COOH + NaOH

Гидролиз солей многоосновных кислот протекает по стадиям, образуя в качестве промежуточных продуктов кислые соли.

Например, соль K2S образована сильным основанием КОН и слабой двухосновной кислотой H2S. Гидролиз этой соли протекает в две стадии.

1 стадия:     S2– + HOH « HS– + OH–

                    K2S + H2O « KHS + KOH

2 стадия:     HS-– + HOH « H2S + OH–

                    KHS + H2O « H2S + KOH

Реакция среды щелочная (pH>7), т.к. в растворе накапливаются ОН–-ионы. Гидролиз соли идет тем сильнее, чем меньше константа диссоциации образующейся при гидролизе слабой кислоты (табл.3). Таким образом, водные растворы солей, образованных сильным основанием и слабой кислотой, характеризуются щелочной реакцией среды.

Гидролиз по катиону идет, если соль образована катионом слабого основания и анионом  сильной кислоты. Например, соль CuSO4 образована слабым двухкислотным основанием Cu(OH)2 и сильной кислотой H2SO4. Гидролиз идет по катиону Cu2+ и протекает в две стадии с образованием в качестве промежуточного продукта основной соли.

1 стадия:     Cu2+ + HOH « CuOH+ + H+

                    2CuSO4 + 2H2O « (CuOH)2SO4 + H2SO4

2 стадия:     CuOH+ + HOH « Cu(OH)2 + H+

                    (CuOH)2SO4 + 2H2O « 2Cu(OH)2 + H2SO4

Ионы водорода Н+ накапливаются в растворе, создавая кислую среду (рН<7). Чем меньше константа диссоциации образующегося при гидролизе основания, тем сильнее идет гидролиз.

Таким образом, водные растворы солей, образованных слабым основанием и сильной кислотой, характеризуются кислой реакцией среды.

Гидролиз по катиону и аниону идет, если соль образована катионом слабого основания и анионом слабой кислоты. Например, соль CH3COONH4  образована слабым основанием NH4OH и слабой кислотой СН3СООН. Гидролиз идет по катиону NH4+ и аниону СН3СОО–:

NH4+ + CH3COO– + HOH « NH4OH + CH3COOH

Водные растворы такого типа солей, в зависимости от степени диссоциации образующихся слабых электролитов имеют нейтральную, слабокислую или слабощелочную среду.

При смешивании растворов солей, например CrCl3 и Na2S каждая из солей гидролизуется необратимо до конца с образованием слабого основания и слабой кислоты.

Гидролиз соли CrCl3 идет по катиону:

Cr3+ + HOH « CrOH2+ + H+

Гидролиз соли Na2S идет по аниону:

S2– + HOH « HS– + OH–

При смешивании растворов солей CrCl3 и Na2S происходит взаимное усиление гидролиза каждой из солей, так как ионы Н+ и ОН– образуют слабый электролит Н2О и ионное равновесие каждой соли смещается в сторону образования конечных продуктов: гидроксида хрома Cr(OH)3 и сероводородной кислоты H2S.

Ионно-молекулярное уравнение совместного гидролиза солей:

2Cr3+ + 3S2– + 6H2O = 2Cr(OH)3¯ + 3H2S

Молекулярное уравнение:

2CrCl3 + 3Na2S + 6H2O = 2Cr(OH)3 + 3H2S + 6NaCl

Соли, образованные катионами сильных оснований и анионами сильных кислот, гидролизу не подвергаются, так как ни один из ионов соли не образует с ионами Н+ и ОН– воды слабых электролитов. Водные растворы таких солей имеют нейтральную среду.

Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).

Различают обратимый и необратимый гидролиз солей[1]:

1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

(раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):

(раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

3. Гидролиз соли слабой кислоты и слабого основания:

(равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).

4. Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален. См. также Электролитическая диссоциация.

Степень гидролиза

Под степенью гидролиза понимается отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. Обозначается α (или hгидр); α = (cгидр/cобщ)·100 % где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли. Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.

Является количественной характеристикой гидролиза.

Константа гидролиза

Константа гидролиза — константа равновесия гидролитической реакции. Так константа гидролиза соли равна отношению произведения равновесных концентраций продуктов реакции гидролиза к равновесной концентрации соли с учетом стехиометрических коэффициентов.

В качестве примера ниже приводится вывод уравнения константы гидролиза соли, образованной слабой кислотой и сильным основанием:

Уравнение константы равновесия для данной реакции имеет вид:

    или    

Так как концентрация молекул воды в растворе постоянна, то произведение двух постоянных  можно заменить одной новой — константой гидролиза:

Численное значение константы гидролиза получим, используя ионное произведение воды  и константу диссоциации азотистой кислоты :

подставим в уравнение константы гидролиза:

В общем случае для соли, образованной слабой кислотой и сильным основанием:

, где  — константа диссоциации слабой кислоты, образующейся при гидролизе

Для соли, образованной сильной кислотой и слабым основанием:

, где  — константа диссоциации слабого основания, образующегося при гидролизе

Для соли, образованной слабой кислотой и слабым основанием:

Гидролиз органических веществ

Живые организмы осуществляют гидролиз различных органических веществ в ходе реакций катаболизма при участии ферментов. Например, в ходе гидролиза при участии пищеварительных ферментовбелки расщепляются на аминокислотыжиры — на глицерин и жирные кислотыполисахариды (например, крахмал и целлюлоза) — на моносахариды (например, на глюкозу), нуклеиновые кислоты — на свободные нуклеотиды.

При гидролизе жиров в присутствии щёлочей получают мыло; гидролиз жиров в присутствии катализаторов применяется для получения глицина и жирных кислот. Гидролизом древесины получают этанол, а продукты гидролиза торфа находят применение в производстве кормовых дрожжейвоскаудобрений и др.

17.механизм окислительно-восстановительных реакций.

Окислительно-восстановительные свойства элементов.

Химические реакции, в результате которых изменяются степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными. В этих реакциях происходит обмен (перенос) электронов от одних реагирующих веществ к другим.

Степень окисления – условный заряд элемента в соединении, который вычисляется в предположении, что химические связи между элементами являются ионными. Заряды атомов кислорода принимают равными -2, в пероксидных соединениях – равным -1; заряд элементов первой группы +1, заряд атома водорода +1, а в гидридах металлов -1.

Принято обозначать степень окисления цифрой с указанием: «плюс», «минус».

В качестве примера окислительно-восстановительной реакции приведем уравнение реакции взаимодействия между H2S и HClO:

-2 +1 -1 0

H2S и HClO=HCl+S↓+H2O

В приведенной реакции происходит понижение степени окисления окислителя (Cl++2ē= Cl-) и повышение степени окисления восстановителя

(S2--2 ē=S0). В приведенном примере HClO является окислителем, а H2S- восстановителем.

Восстановитель - это частица, отдающая электрон, окислитель - принимающая электрон. Окисление - процесс отдачи электронов, восстановление - процесс приема электрона.

Окисление и восстановление – взаимосвязанные процессы, так как вещества могут отдавать электроны только в том случае, если в реакции участвует другое вещество, способное электроны принимать, что определяет закон сохранения заряда в химических реакциях.

Окислительные свойства могут проявлять как простые, так и сложные вещества. К типичным  (сильным) окислителям относятся фтор, галогены, кислород, а так же КClO3, НClO3, HNO3, H2SO4 (конц), MnO2, KMnO4, K2Cr2O7, PbO2 и др.

Восстановителями являются металлы, Н2, С (графит), HCl(конц), KI, KBr, H2S, CO, FeSO4.

Всегда восстановитель – это атом (частица) с максимально возможным числом электронов. Окислитель - это атом (частица) с минимально возможным числом электронов.

Пример:

Мn0

Мn+2, Мn+3, Мn+4, Мn+5, Мn+6 ,

Мn+7

всегда восстановитель

состояние атома в окислительно-восстановительной двойственности

всегда окислитель

Есть вещества, способные проявлять и окислительные и восстановительные свойства. К ним относятся вещества, в состав которых входят атомы элементов в промежуточных степенях окисления. Под действием окислителей они могут повышать свою степень окисления, проявляя восстановительные свойства, а при реакциях с восстановителями – понижать степень окисления, проявляя окислительные свойства. К таким веществам относятся KNO2, H2O2, SO2, Na2SO3 и др.

Факторы, определяющие окислительно-восстановительные свойства элементов:

Природа атомов определяется положением элемента в периодической системе.

Для восстановителей характерен большой радиус, маленькая энергия ионизации. Энергия ионизации - энергия, которая затрачивается для отрыва электрона от атома. Для окислителей характерен малый радиус и большая энергия сродства к электрону.

Влияние кислотности среды. Например, KMnOуниверсальный окислитель, его окисляющая способность проявляется при любых условиях среды:

а) кислая среда, рН<7

Mn+7+5ē→ Mn+2 (безцветный)

б) нейтральная среда, рН=7

Mn+7+3ē→ Mn+4 (бурый)

в) щелочная среда, рН>7

Mn+7+1ē→ Mn+6 (зеленый)

Расстановку коэффициентов в ОВР проводят по правилу электронного баланса: «Число электронов, отданных восстановителем, равно числу электронов, принятых окислителем».

Эквиваленты окислителей и восстановителей

Понятие эквивалента в ОВР то же, что в реакциях обмена.

18.методы составления уравнений окислительно -восстановительных реакций.

Существуют два метода составления окислительно - восстановительных реакций - метод электронного баланса и метод полуреакций. Здесь мы рассмотрим метод электронного баланса. В этом методе сравнивают степени окисления атомов в исходных веществах и в продуктах реакции, приэтом руководствуемся правилом: число электронов, отданных восстановителем, должно равняться числу электронов, присоединённых окислителем. Для составления уравнения надо знать формулы реагирующих веществ и продуктов реакции. Рассмотрим этот метод на примере.

Расставить коэффициенты в реакции, схема которой: HCl + MnO2 Cl2 + MnCl2 + H2O

Алгоритм расстановки коэффициентов

1.Указываем степени окисления химических элементов.

Подчёркнуты химические элементы, в которых изменились степени окисления.

2.Составляем электронные уравнения, в которых указываем число отданных и принятых электронов.

За вертикальной чертой ставим число электронов, перешедших при окислительном и восстановительном процессах. Находим наименьшее общее кратное ( взято в красный кружок). Делим это число на число перемещённых электронов и получаем коэффициенты (взяты в синий кружок). Значит перед марганцем будет стоять коэффициент-1, который мы не пишем, и перед Cl2 тоже -1. Перед HCl коэффициент 2 не ставим, а считаем число атомов хлора в продуктах реакции. Оно равно - 4.Следовательно и перед HCl ставим - 4,уравниваем число атомов водорода и кислорода справа, поставив перед H2O коэффициент - 2. В результате получится химическое уравнение:

Рассмотрим более сложное уравнение:

H2S + KMnO4 + H2SO4 S + MnSO4 + K2SO4 + H2O

Расставляем степени окисления химических элементов:

Электронные уравнения примут следующий вид

Перед серой со степенями окисления -2 и 0 ставим коэффициент 5, перед соединениями марганца -2, уравниваем число атомов других химических элементов и получаем окончательное уравнение реакции

 

19. влияние реакции среды на характер протекания окислительно- восстановительных реакций.

Реакции окисления-восстановления могут протекать в различных средах: в кислой (избыток Н+- ионов), нейтральной (Н2О) и щелочной (избыток гидроксид-ионов ОН-). В зависимости от характера среды может изменяться характер протекания реакции между одними и теми же веществами. Среда влияет на изменение степеней окисления атомов.

Классическим примером, иллюстрирующим влияние среды на характер протекания окислительно-восстановительных реакций, является восстановление KMnO4. Перманганат калия является сильным окислителем, окислительная способность которого зависит от характера среды.

Наибольшую окислительную способность ионы Mn+7 проявляют в сильнокислой среде, восстанавливаясь до ионов Mn+2, несколько меньшую – в нейтральной или близкой к ней среде, в которой они восстанавливаются до MnO2, и минимальную – в сильнощелочной, восстанавливаясь до манганат-иона MnO4-2.

Схематически эти изменения можно изобразить так:

Окисленная форма Восстановленная форма

H+ Mn2+, бесцветный раствор

 MnO4- H2O MnO2, бурый осадок

OH - MnO42+, раствор зеленого цвета

 

Например:

2 KMnO4 + 5 Na2SO3 + 3 H2SO4 = 2MnSO4 + 5 Na2SO4 + K2SO4 + 3 H2O

2 KMnO4 + 3 Na2SO3 + H2O = 2 MnO2↓ + 3 Na2SO4 + 2 KOH

2 KMnO4 + Na2SO3 + 2 KOH = 2 K2MnO4 + Na2SO4 + H2O

Для создания кислой среды используют разбавленную серную кислоту H2SO4.

Нежелательно использовать для этих целей соляную и особенно азотную, так как HCl в этих условиях будет проявлять восстановительные свойства, а HNO3 является окислителем. Для создания щелочной среды используют NaOH или KOH.

Количественной характеристикой среды является рН (водородный показатель), значение которого можно определить с помощью различных индикаторов.

Индикаторы – это вещества, которые в зависимости от среды изменяют свою окраску.

Индикатор

Среда

Кислая

Нейтральная

Щелочная

Лакмус

Розовый

Фиолетовый

Синий

Фенолфталеин

Бесцветный

Бесцветный

Малиновый

Метиловый оранжевый

Красный

Оранжевый

Желтый

20. основные положения координационной теории.

Для объяснения строения и свойств комплексных соединений в 1893 г. швейцарским химиком А Вернером была предложена координационная теория в которую он ввел два понятия: о координации и о побочной валентности.

По Вернеру главной валентностьюназывается валентность посредством которой соединяются атомы с образованием простых соединений, подчиняющихся теории

валентности. Но, исчерпав главную валентность, атом способен, как правило, к дальнейшему присоединению за счет побочной валентности,в результате проявления которой и образуется комплексное соединение.

Под действием сил главной и побочной валентности атомы стремятся равномерно окружить себя ионами или молекулами и являются таким образом центром притяжения. Такие атомы называются центральными или комплексообразователями. Ионы или молекулы, непосредственно связанные с комплексообразователем, называютсялигандами.

Посредством главной валентности присоединяются лиганды ионы, а посредством побочной валентности – ионы и молекулы.

Притяжение лиганд к комплексообразователю называется координацией, а число лиганд – координационным числом комплексообразователя.

Можно сказать, что комплексные соединения это соединения, молекулы которых состоят из центрального атома (или иона) непосредственно связанного с определённым числом других молекул или ионов, называемых лигандами.

В роли комплексообразователей чаще всего выступают катионы металлов (Со+3, Рt+4,Cr+3,Cu+2Au+3и др.)

В качестве лигандов могут выступать ионы Cl-,CN-,NCS-,NO2-,OH-,SO42- так и нейтральные молекулыNH3,H2O, амины, аминокислоты, спирты, тиоспирты, РН3, эфиры.

Число координационных мест, занимаемых лигандом около комплексообразователя, называется его координационной ёмкостью или дентатностью.

Лиганды, присоединенные к комплексообразователю одной связью, занимают одно координационное месть и называются монодентатнымия (Cl-,CN-,NCS-). Если же лиганд присоединён к комплексообразователю посредством нескольких связей, то он является полидентатным. Например:SO42- , СО32-являются бидентатными.

Комплексообразователь и лиганды составляют внутреннюю сферусоединения или комплекс (в формулах комплекс заключают в квадратные скобки). Ионы, не связанные непосредственно с комплексообразвателем, составляютвнешнюю координационную сферу.

Ионы внешней сферы связаны менее прочно по сравнению с лигандами и пространственно удалены от комплексообразователя. Они легко замещаются другими ионами в водных растворах.

Например, в соединении К3[Fe(CN)6] комплексообразователем являетсяFe+2, лигандами -CN-. Два лиганда присоединены за счет главной валентности, а 4 – за счет побочной валентности, следовательно координационное число равно 6.

Ион Fe+2с лигандамиCN-составляютвнутреннюю сферу или комплекс, а ионы К+внешнюю координационную сферу:

Как правило координационное число равно удвоенному заряду катиона металла, например: однозарядные катионы имеют координационное число равное 2, 2-х зарядные – 4, а 3-х зарядные – 6. если элемент проявляет переменную степень окисления, то с увеличением её координационное число растет. Для некоторых комплексообразователей координационное число является постоянным, например: Со+3, Рt+4,Cr+3имеют координационное число равное 6, у ионов В+3, Ве+2, Сu+2 ,Au+3координационное число равно 4. для большинства ионов координационное число является переменным и зависит от природы ионов внешней сферы и от условий образования комплексов.

21.номенклатура комплексных соединений.

В химии под номенклатурой понимают систему правил составления названий соединений.

Согласно номенклатуре комплексных соединений, название комплексного аниона начинают с указания состава внутренней сферы *. Во внутренней сфере прежде всего называют анионы, прибавляя к их названию окончание  -о. Например: Cl (хлоро-), CN (циано-), OH (гидроксо-) и т.д. Далее называют нейтральные лиганды *. При этом дляаммиака используют название “аммин”, для воды – “аква”. Количество лигандов указывают греческими числительными: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем называют комплексообразователь *, используя для него латинское название и окончание -ат, после чего римскими цифрами в скобках указывают степень окисления *комплексообразователя. После обозначения состава внутренней сферы называют внешнесферные катионы.

Если комплексообразователь входит в состав катиона, то название внутренней сферы составляют так же, как в случае комплексного аниона, но используют русское название комплексообразователя и в скобках указывают степень его окисления. Примеры:

K[Fe(NH3)2(CN)4] – тетрацианодиамминферрат (III) калия

K4[Fe(CN)6] – гексацианоферрат (II) калия

Na2[PtCl6] – гексахлороплатинат (IV) калия

(NH4)2[Pt(OH)2Cl4] – тетрахлородигидроксоплатинат (IV) аммония

[Pt(NH3)4Cl2]Cl2 – хлорид дихлоротетраамминплатины (IV)

[Ag(NH3)2]Cl – хлорид диамминсеребра (I)

Если комплексное соединение является неэлектролитом, т.е. не содержит ионов во внешней сфере, то степень окисления центрального атома не указывается, т.к. она однозначно определяется из условия электронейтральности комплекса. Например:

[RhI3(NH3)3)] – трииодотриамминродий

[Co(NO2)3(H2O)3] – тринитротриаквакобальт

[Cu(CNS)2(NH3)2] – дироданодиамминмедь.

22.оксиды: определение, классификация и свойства.

Оксиды.

Это – сложные вещества состоящие из ДВУХ элементов, один из которых кислород. Например:

CuO– оксид меди(II)

AI2O3– оксид алюминия

SO3– оксид серы (VI)

Оксиды делятся (их классифицируют) на 4 группы:

1). Основные – Это оксидыметаллов. Если степень окисления < 4. Например:

Na2O– Оксид натрия

СаО – Оксид кальция

Fe2O3– оксид железа (III)

2). Кислотные– Это оксидынеметаллов. А иногда и металлов если степень окисления металла > 4. Например:

СО2– Оксид углерода (IV)

Р2О5– Оксид фосфора (V)

SO3– Оксид серы (VI)

3). Амфотерные– Это оксиды которые имеют свойства , как основных так и кислотных оксидов. Необходимо знать пять наиболее часто встречающихся амфотерных оксидов:

BeO–оксид бериллия

ZnO– Оксид цинка

AI2O3– Оксид алюминия

Cr2O3– Оксид хрома (III)

Fe2O3– Оксид железа (III)

4). Несолеобразующие (безразличные)– Это оксиды которые не проявляют свойств ни основных, ни кислотных оксидов. Необходимо запомнить три оксида:

СО – оксид углерода (II) угарный газ

NO– оксид азота (II)

N2O– оксид азота (I) веселящий газ, закись азота

Способы получения оксидов.

1). Горение, т.е. взаимодействие с кислородом простого вещества:

4Na + O2= 2Na2O

4P + 5O2= 2P2O5

2). Горение, т.е. взаимодействие с кислородом сложного вещества (состоящего из двух элементов) при этом образуютсядва оксида.

2ZnS + 3O2= 2ZnO + 2SO2

4FeS2+ 11O2= 2Fe2O3+ 8SO2

3). Разложение трех слабых кислот. Другие не разлагаются. При этом образуются – кислотный оксид и вода.

Н2СО3= Н2О + СО2

Н2SO3 = H2O + SO2

H2SiO3= H2O + SiO2

4). Разложение нерастворимых оснований. Образуются основный оксид и вода.

Mg(OH)2= MgO + H2O

2Al(OH)3= Al2O3+ 3H2O

5). Разложение нерастворимыхсолей. Образуются основный оксид и кислотный оксид.

СаСО3= СаО + СО2

МgSO3 = MgO + SO2

Химические свойства.

I. Основных оксидов.

1). Взаимодействие с водой, при этом должна образоваться щелочь.

Na2O+H2O= 2NaOH

CaO+H2O=Ca(OH)2

СuO+H2O= реакция не протекает, т.к. возможное основание в состав которого входит медь - нерастворимо

2). Взаимодействие с кислотами, при этом образуется соль и вода. (Основный оксид и кислоты реагируют ВСЕГДА )

К2О +2НСI = 2KCl + H2O

CaO + 2HNO3= Ca(NO3)2+ H2O

3). Взаимодействие с кислотными оксидами, при этом образуется соль.

Li2O + CO2= Li2CO3

3MgO + P2O5= Mg3(PO4)2

4). Взаимодействие с водородом, при этом образуется металл и вода.

CuO + H2= Cu + H2O

Fe2O3+ 3H2= 2Fe + 3H2O

II. Кислотных оксидов.

1). Взаимодействие с водой, при этом должна образоваться кислота. (Только SiO2 не взаимодействует с водой)

CO2+ H2O = H2CO3

P2O5+ 3H2O = 2H3PO4

2). Взаимодействие с растворимыми основаниями (щелочами). При этом образуется соль и вода.

SO3+ 2KOH = K2SO4+ H2O

N2O5+ 2KOH = 2KNO3+ H2O

3). Взаимодействие с основными оксидами. При этом образуется только соль.

N2O5+K2O = 2KNO3

Al2O3+ 3SO3= Al2(SO4)3

Основные упражнения.

1). Закончить уравнение реакции. Определить её тип.

К2О + Р2О5=

Решение.

Что бы записать, что образуется в результате – необходимо определить – какие вещества вступили в реакцию – здесь это оксид калия (основный) и оксид фосфора (кислотный) согласно свойств – в результате должна получиться СОЛЬ (смотри свойство № 3) а соль состоит из атомов металлов (в нашем случае калия) и кислотного остатка в состав которого входит фосфор (т.е. РО4-3– фосфат) Поэтому

2О + Р2О5= 2К3РО4

тип реакции – соединение (так как вступают в реакцию два вещества, а образуется – одно)

2). Осуществить превращения (цепочка).

1 2 3 4

Са → СаО → Са(ОН)2→ СаСО3→ СаО

Решение

Для выполнения этого упражнения необходимо помнить, что каждая стрелочка это одно уравнение (одна химическая реакция). Пронумеруем каждую стрелочку. Следовательно, необходимо записать 4 уравнения. Вещество записанное слева от стрелочки(исходное вещество) вступает в реакцию, а вещество записанное справа – образуется в результате реакции(продукт реакции). Расшифруем первую часть записи:

Са → СаО

Са + …..→ СаО Мы обращаем внимание, что вступает в реакцию простое вещество, а образуется оксид. Зная способы получения оксидов ( № 1 ) приходим к выводу, что в данной реакции необходимо добавить –кислород (О2)

2Са + О2→ 2СаО

Переходим к превращению № 2

СаО → Са(ОН)2

СаО + ……→ Са(ОН)2

Приходим к выводу , что здесь необходимо применить свойство основных оксидов – взаимодействие с водой, т.к. только в этом случае из оксида образуется основание.

СаО + Н2О → Са(ОН)2

Переходим к превращению № 3

Са(ОН)2→ СаСО3

Сa(OH)2+ ….. =CaCO3+ …….

Приходим к выводу, что здесь речь идет об углекислом газе СО2т.к. только он при взаимодействии со щелочами образует соль (смотри свойство № 2 кислотных оксидов)

Сa(OH)2+ СО2=CaCO3+ Н2О

Переходим к превращению № 4

СаСО3→ СаО

СаСО3= ….. СаО + ……

Приходим к выводу что здесь образуется еще СО2, т.к. СаСО3нерастворимая соль и именно при разложении таких веществ образуются оксиды.

СаСО3 = СаО + СО2

3). С какими из перечисленных веществ взаимодействует СО2. Напишите уравнения реакций.

А). Соляная кислота Б). Гидроксид натрия В). Оксид калия г). Вода

Д). Водород Е). Оксид серы (IV).

23.кислоты: определение, классификация и свойства.

Слова "кислота" и "кислый" не зря имеют общий корень. Растворы всех кислот на вкус кислые. Это не означает, что раствор любой кислоты можно пробовать на язык– среди них встречаются очень едкие и даже ядовитые. Но такие кислоты как уксусная (содержится в столовом уксусе), яблочная, лимонная, аскорбиновая (витамин С), щавелевая и некоторые другие (эти кислоты содержатся в растениях) знакомы вам именно своим кислым вкусом.

В этом параграфе мы рассмотрим только важнейшие неорганические кислоты, то есть такие, которые не синтезируются живыми организмами, но играют большую роль в химии и химической промышленности.

Все кислоты, независимо от их происхождения, объединяет общее свойство – они содержат реакционноспособные атомы водорода. В связи с этим кислотам можно дать следующее определение:

Кислота – это сложное вещество, в молекуле которого имеется один или несколько атомов водорода и кислотный остаток.

Свойства кислот определяются тем, что они способны заменять в своих молекулах атомы водорода на атомы металлов. Например:

H2SO4

+

Mg

=

MgSO4

+

H2

серная кислота

 

металл

 

соль

 

водород

H2SO4

+

MgO

=

MgSO4

+

H2O

серная кислота

 

оксид

 

соль

 

вода

Давайте на примере серной кислоты рассмотрим ее образование из кислотного оксида SO3, а затем реакцию серной кислоты с магнием. Валентности всех элементов, участвующих в реакции, нам известны, поэтому напишем соединения в виде структурных формул:

Эти примеры позволяют легко проследить связь между кислотным оксидом SO3, кислотой H2SO4 и солью MgSO4. Одно "рождается" из другого, причем атом серы и атомы кислорода переходят из соединения одного класса (кислотный оксид) в соединения других классов (кислота, соль).

Кислоты классифицируют по таким признакам: а) по наличию или отсутствию кислорода в молекуле и б) по числу атомов водорода.

По первому признаку кислоты делятся на кислородсодержащие и бескислородные (табл. 8-1).

Таблица 8-1. Классификация кислот по составу.

Кислородсодержащие кислоты

Бескислородные кислоты

H2SOсерная кислота

H2SOсернистая кислота

HNOазотная кислота

H3POфосфорная кислота

H2COугольная кислота

H2SiOкремниевая кислота

HF фтороводородная кислота

HCl хлороводородная кислота (соляная кислота)

HBr бромоводородная кислота

HI иодоводородная кислота

H2S сероводородная кислота

По количеству атомов водорода, способных замещаться на металл, все кислоты делятся на одноосновные (с одним атомом водорода), двухосновные (с 2 атомами Н) итрехосновные (с 3 атомами Н), как показано в табл. 8-2:

Таблица 8-2. Классификация кислот по числу атомов водорода.

 

К И С Л О Т Ы

 

Одноосновные

Двухосновные

Трехосновные

HNOазотная

HF фтороводородная

HCl хлороводородная

HBr бромоводородная

HI иодоводородная

H2SOсерная

H2SO3 сернистая

H2S сероводородная

H2COугольная

H2SiO3 кремниевая

H3PO4фосфорная

** Термин "одноосновная кислота" возник потому, что для нейтрализации одной молекулы такой кислоты требуется "одно основание", т.е. одна молекула какого-либо простейшего основания типа NaOH или KOH:

HNO3 + NaOH = NaNO3 + H2O

HCl + KOH = KCl + H2O

Двухосновная кислота требует для своей нейтрализации уже "два основания", а трехосновная – "три основания":

H2SO4 + 2 NaOH = Na2SO4 + 2 H2O

H3PO4 + 3 NaOH = Na3PO4 + 3 H2O

Рассмотрим важнейшие химические свойства кислот.. Действие растворов кислот на индикаторы. Практически все кислоты (кроме кремниевой) хорошо растворимы в воде. Растворы кислот в воде изменяют окраску специальных веществ – индикаторов. По окраске индикаторов определяют присутствие кислоты. Индикатор лакмус окрашивается растворами кислот в красный цвет, индикатор метиловый оранжевый – тоже в красный цвет.

Индикаторы представляют собой вещества сложного строения. В растворах оснований и в нейтральных растворах они имеют иную окраску, чем в растворах кислот. Об индикаторах мы более подробно расскажем в следующем параграфе на примере их реакций с основаниями.

2. Взаимодействие кислот с основаниями. Эта реакция, как вы уже знаете, называется реакцией нейтрализации. Кислота реагируют с основанием с образованием соли, в которой всегда в неизменном виде обнаруживается кислотный остаток. Вторым продуктом реакции нейтрализации обязательно является вода. Например:

кислота

 

основание

 

соль

 

вода

H2SO4

+

Ca(OH)2

=

CaSO4

+

2 H2O

H3PO4

+

Fe(OH)3

=

FePO4

+

3 H2O

2 H3PO4

+

3 Ca(OH)2

=

Ca3(PO4)2

+

6 H2O

Для реакций нейтрализации достаточно, чтобы хотя бы одно из реагирующих веществ было растворимо в воде. Поскольку практически все кислоты растворимы в воде, они вступают в реакции нейтрализации не только с растворимыми, но и с нерастворимыми основаниями. Исключением является кремниевая кислота, которая плохо растворима в воде и поэтому может реагировать только с растворимыми основаниями – такими как NaOH и KOH:

H2SiO3 + 2 NaOH = Na2SiO3 + 2H2O

3. Взаимодействие кислот с основными оксидами. Поскольку основные оксиды – ближайшие родственники оснований – с ними кислоты также вступают в реакции нейтрализации:

кислота

 

оксид

 

соль

 

вода

2 HCl

+

CaO

=

CaCl2

+

H2O

2 H3PO4

+

Fe2O3

=

2 FePO4

+

3 H2O

Как и в случае реакций с основаниями, с основными оксидами кислоты образуют соль и воду. Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации.

Например, фосфорную кислоту используют для очистки железа от ржавчины (оксидов железа). Фосфорная кислота, убирая с поверхности металла его оксид, с самим железом реагирует очень медленно. Оксид железа превращается в растворимую соль FePO4, которую смывают водой вместе с остатками кислоты.

4. Взаимодействие кислот с металлами. Как мы видим из предыдущего примера, для взаимодействия кислот с металлом должны выполняться некоторые условия (в отличие от реакций кислот с основаниями и основными оксидами, которые идут практически всегда).

Во-первых, металл должен быть достаточно активным (реакционноспособным) по отношению к кислотам. Например, золото, серебро, медь, ртуть и некоторые другие металлы с выделением водорода с кислотами не реагируют. Такие металлы как натрий, кальций, цинк – напротив – реагируют очень активно с выделением газообразного водорода и большого количества тепла.

кислота

 

металл

 

соль

 

 

HCl

+

Hg

=

не образуется

 

2 HCl

 

2 Na

=

2 NaCl

+

H

H2SO4

+

Zn

=

ZnSO4

+

H

По реакционной способности в отношении кислот все металлы располагаются в ряд активности металлов (табл. 8-3). Слева находятся наиболее активные металлы, справа – неактивные. Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами.

Табл. 8-3. Ряд активности металлов.

Металлы, которые вытесняют водород из кислот

Металлы, которые не вытесняют водород из кислот

K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H)

¬ самые активные металлы

Cu Hg Ag Pt Au

самые неактивные металлы ®

Во-вторых, кислота должна быть достаточно сильной, чтобы реагировать даже с металлом из левой части табл. 8-3. Под силой кислоты понимают ее способность отдавать ионы водорода H+.

Например, кислоты растений (яблочная, лимонная, щавелевая и т.д.) являются слабыми кислотами и очень медленно реагируют с такими металлами как цинк, хром, железо, никель, олово, свинец (хотя с основаниями и оксидами металлов они способны реагировать).

С другой стороны, такие сильные кислоты как серная или соляная (хлороводородная) способны реагировать со всеми металлами из левой части табл. 8-3.

В связи с этим существует еще одна классификация кислот – по силе. В таблице 8-4 в каждой из колонок сила кислот уменьшается сверху вниз.

Таблица 8-4. Классификация кислот на сильные и слабые кислоты.

Сильные кислоты

Слабые кислоты

HI иодоводородная

HBr бромоводородная

HCl хлороводородная

H2SOсерная

HNO3 азотная

HF фтороводородная

H3PO4 фосфорная

H2SO3 сернистая

H2S сероводородная

H2CO3 угольная

H2SiO3 кремниевая

** Следует помнить, что в реакциях кислот с металлами есть одно важное исключение. При взаимодействии металлов с азотной кислотой водород не выделяется. Это связано с тем, что азотная кислота содержит в своей молекуле сильный окислитель – азот в степени окисления +5. Поэтому с металлами в первую очередь реагирует более активный окислитель N+5, а не H+, как в других кислотах. Выделяющийся все же в каком-то количестве водород немедленно окисляется и не выделяется в виде газа. Это же наблюдается и для реакций концентрированной серной кислоты, в молекуле которой сера S+6 также выступает в роли главного окислителя. Состав продуктов в этих окислительно-восстановительных реакциях зависит от многих факторов: активности металла, концентрации кислоты, температуры. Например:

Cu + 4 HNO3(конц.) =Cu(NO3)2 + 2 NO2 + 2 H2O

3 Cu + 8HNO3(разб.) = 3 Cu(NO3)2 + 2 NO + 4 H2O

8 K + 5 H2SO4(конц.) = 4 K2SO4 + H2S + 4 H2O

3 Zn + 4 H2SO4(конц.) = 3 ZnSO4 + S + 4 H2O

Есть металлы, которые реагируют с разбавленными кислотами, но не реагирует с концентрированными (т.е. безводными) кислотами – серной кислотой и азотной кислотой.

Эти металлы – Al, Fe, Cr, Ni и некоторые другие – при контакте с безводными кислотами сразу же покрываются продуктами окисления (пассивируются). Продукты окисления, образующие прочные пленки, могут растворяться в водных растворах кислот, но нерастворимы в кислотах концентрированных.

Это обстоятельство используют в промышленности. Например, концентрированную серную кислоту хранят и перевозят в железных бочках.

24.основания: определение, классификация и свойства.

Если вещество содержит гидрокси-группы (ОН), которые могут отщепляться (подобно отдельному "атому") в реакциях с другими веществами, то такое вещество является основанием. Существует много оснований, которые состоят из атома какого-либо металла и присоединенных к нему гидрокси-групп. Например:

NaOH – гидроксид натрия,

KOH – гидроксид калия,

Ca(OH)2 – гидроксид кальция,

Fe(OH)3 – гидроксид железа (III),

Ba(OH)2 – гидроксид бария.

Гидрокси-группы одновалентны, поэтому формулу основания легко составить по валентности металла. К химическому символу металла надо приписать столько гидрокси-групп, какова валентность металла. Большинство оснований – ионные соединения.

Основаниями называются вещества, в которых атомы металла связаны с гидрокси-группами.

Существует также основание, в котором гидрокси-группа присоединена не к металлу, а к иону NH4+ (катиону аммония). Это основание называется гидроксидом аммония и имеет формулу NH4OH. Гидроксид аммония образуется в рекции присоединения воды к аммиаку, когда аммиак растворяют в воде:

NH3 + H2O = NH4OH (гидроксид аммония).

Основания бывают растворимыми и нерастворимыми. Растворимые основания называются щелочами. Растворы щелочей скользкие на ощупь ("мыльные") и довольно едкие. Они разъедают кожу, ткани, бумагу, очень опасны (как и кислоты) при попадании в глаза. Поэтому при работе со щелочами и кислотами необходимо пользоваться защитными очками.

Если раствор щелочи все-таки попал в лицо, необходимо промыть глаза большим количеством воды, а затем разбавленным раствором слабой кислоты (например, уксусной). Этот способ медицинской помощи основан на уже известной нам реакции нейтрализации.

NaOH + уксусная кислота (разб.) = соль + вода

Лишь небольшую часть всех оснований называют щелочами. Это, например, KOH – гидроксид калия (едкое кали), NaOH – гидроксид натрия (едкий натр), LiOH – гидроксид лития, Ca(OH)2 – гидроксид кальция (его раствор называется известковой водой), Ba(OH)2 – гидроксид бария. Большинство других оснований в воде нерастворимы и щелочами их не называют.

Щелочами называются растворимые в воде сильные основания.

Рассмотрим еще раз типичные реакции нейтрализации между щелочью и кислотой при помощи структурных формул:

Такая схема наглядно показывает различие между кислотами и основаниями: кислоты склонны отщеплять атомы водорода, а основания – гидрокси-группы. В реакцию нейтрализации с кислотами вступают любые основания, а не обязательно только щелочи.

Разные основания имеют разную способность отщеплять гидрокси-группы, поэтому их, подобно кислотам, подразделяют на сильные и слабые основания (таблица 8-5). Сильные основания в водных растворах склонны легко отдавать свои гидрокси-группы, а слабые – нет.

Таблица 8-5. Классификация оснований по силе.

Сильные основания

Слабые основания

NaOH гидроксид натрия (едкий натр)

KOH гидроксид калия (едкое кали)

LiOH гидроксид лития

Ba(OH)2 гидроксид бария

Ca(OH)2 гидроксид кальция (гашеная известь)

Mg(OH)2 гидроксид магния

Fe(OH)2 гидроксид железа (II)

Zn(OH)2 гидроксид цинка

NH4OH гидроксид аммония

Fe(OH)3 гидроксид железа (III)

и т.д. (большинство гидроксидов металлов)

** Не следует путать силу основания и его растворимость. Например, гидроксид кальция – сильное основание, хотя его растворимость в воде не велика. В данном случае сильным основанием (щелочью) мы называем ту часть гидроксида кальция, которая растворена в воде.

Сила основания важна в реакциях со слабыми кислотами. Слабое основание и слабая кислота реагируют лишь в незначительной степени. Напротив, сильное основание легче реагирует с любой кислотой независимо от её силы.

2 NH4OH

+

H2S

=

(NH4)2S

+

2 H2O

слабое основание

 

слабая кислота

 

реакция протекает лишь в незначительной степени (мало продуктов реакции)

2 NaOH

+

H2S

=

Na2S

+

2 H2O

сильноеоснование

 

слабая кислота

 

продуктов реакции больше

Еще одно важное химическое свойство оснований – способность разлагаться при нагревании на воду и основной оксид.

Cu(OH)2 = CuO + H2O (при нагревании)

2 Fe(OH)3 = Fe2O3 + 3 H2O (при нагревании)

Растворы щелочей окрашивают индикаторы: лакмус – в синий цвет, фенолфталеин – в малиновый цвет. Индикатор метиловый оранжевый (или метилоранж) в растворах щелочей имеет желтый цвет. 

25. соли: определение, классификация и свойства.

Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO4 – сульфат кальция и т. д.

Практически все соли  являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na+Cl – хлорид натрия

Ca2+SO42– – сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

1. Средние соли – все атомы водорода в кислоте замещены металлом: Na2CO3, KNO3 и т.д. 2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO3, NaH2PO4ит. д.

3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO3, KAl(SO4)2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO4 – сульфат кальция, Mg SO4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI2 – хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl3)2 – бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH2PO4– дигидрофосфат натрия.

Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO3 = CaO + CO2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H2 SO4 → Na2SO4  +  2HCl↑.

3. Взаимодействуют с основаниями, образуя новую соль и новое основание:

Ba(OH)2 + Mg SO → BaSO4↓ + Mg(OH)2.

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO3  → AgCl + NaNO3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

Fe + CuSO4   FeSO4 + Cu↓.

26. предмет, задачи и методы аналитической химии.

Аналитическая химия – наука о принципах и методах определения химического состава вещества и его структуры. Предметом аналитической химии как науки является теория и практика химического анализа. Аналитическая химия включает качественный и количественный анализы. Задача качественного анализа – обнаружение отдельных компонентов (элементов, ионов, соединений) анализируемого образца и идентификация соединений. Задача количественного анализа – определение количеств (концентрации или массы компонентов). Некоторые современные методы анализа (например, эмиссионная спектроскопия) позволяют сразу получать информацию и о качественном составе образца, и о количественном содержании отдельных компонентов. В целом,задачами аналитической химии являются:  Развитие теории химических и физико-химических методов анализа, научное обоснование, разработка методов и приёмов исследования, в том числе и автоматических  Разработка методов разделения веществ и методов концентрирования микропримесей  Совершенствование методов анализа природных веществ, технических материалов  Контроль в процессе проведения исследовательских работ в области химии, промышленности и техники  Химико-аналитический контроль в ходе химико-технологических процессов, поддерживая оптимальный уровень  Создание методов автоматического контроля технологических процессов. Методы аналитической химии В аналитической химии различают:  методы разделения  и концентрирования   методы определения   гибридные методы. Основной задачей разделения является отделение мешающих компонентов или выделение определяемого компонента в виде, пригодном для качественного или количественного определения. Часто при этом происходит концентрирование компонента. В некоторых случаях определение какого-либо компонента проводят непосредственно в пробе без предварительного разделения.                          . Часто методы разделения и определения бываютсвязаны между собой очень тесно, образуя единое целое. Пример: хроматография, где анализируемая смесь разделяется на компоненты, и содержание компонентов определяется количественно по площади пика. Такие методы анализа называют комбинированными, или  гибридными.

27. понятия качественного анализа: аналитическая реакция, реагент, аналитическая группа, групповой реагент, обнаруживаемый минимум, минимальная концентрация, специфическая (частная) аналитическая реакция, селективные реакции, характерные и групповые реакции, дробный и систематический ход анализа.

Обнаруживаемый минимум - это наименьшее количество иона, которое удается обнаружить с помощью данной реакции (при соблюдении необходимых условий).

- Качественный анализ — совокупность химических, физико-химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе используют легко выполнимые, характерные химические реакции, при которых наблюдается появление или исчезновение окрашивания, выделение или растворение осадка, образование газа и др. Реакции должны быть как можно более селективны и высокочувствительны. Качественный анализ в водных растворах основан на ионных реакциях и позволяет обнаружить катионы или анионы.

Химические препараты или вещества, реагенты, которые применяются в научных целях, лабораторных условиях для анализа, или для других целей. В основном, химический реагент является индивидуальным веществом, но к реактивам относятся также и некоторые смеси веществ. Иногда реагентами называются растворы достаточно сложного состава, имеющие специальное назначение. Многие из химических реагентов производятся специально для исследований в лабораториях, но применяются и очищенные химические продукты, которые выпускаются для промышленности. Химический реагент также подразделяется на группы зависимо от их состава: органические или неорганические реактивы, реактивы, которые содержат радиоактивные изотопы, и другие. Чувствительность химических реагентов – это наименьшее количество вещества – иона, которое может быть обнаружено или определены количеством при добавлении реагента. Специфическими являются те реагенты, которые дают характерную реакцию с веществом или анализируемым ионом в известных условиях, не важно, присутствуют ли другие ионы. Многие из химических реагентов огнеопасны, ядовиты и взрывоопасны, потому то при работе с такими нужно соблюдать все меры предосторожности.

К I аналитической группе катионов относятся Li, Na, K, NHt, Mg2 и некоторые другие катионы. Это отличает I группу катионов от всех остальных групп, имеющих групповые реактивы. 

К третьей аналитической группе катионов относятся А13, Fe3, Fe2, Zn2, Cr3, Mn2, Со2, Ni2 и др. Большинство соединений катионов третьей группы малорастворимо в воде и многие из них окрашены. В водных растворах бесцветны А13 - и 7п2 - ионы. Растворы солей Fe3 имеют желтую окраску, Fe2 - бледно-зеленую. К малорастворимым солям в воде относят сульфиды, фосфаты, цианиды, гексацианоферраты, карбонаты и др. Хорошо растворяются в воде сульфаты, хлориды, б ромиды, иоднды, нитраты, нитриты, ацетаты, роданиды. 

К III аналитической группе катионов относятся ионы металлов Al, Cr, Fe, Мп, Zn, Ni, Со. Последние, однако, легко растворяются в разбавленных кислотах, что отличает III группу от IV и V групп. 

К V аналитической группе катионов относятся ионы мышьяка, сурьмы и олова. 

К I аналитической группе катионов относятся Li 1, Na, K, NH, Mg и некоторые другие катионы. Все эти катионы не имеют общего группового реактива и поэтому они одновременно не могут быть осаждены каким-либо реактивом. Это отличает I группу катионов от всех остальных групп, имеющих групповые реактивы. 

К III аналитической группе катионов относятся А13, Fe3 Fe2, Zn2, Сг3, Мп, Со2, Ni2 и др. Большинст ] соединений катионов III группы малорастворимо в воде и мног из них окрашены. Растворы солей Fe3 имеют желтую окраску, Fe2 бледно-зеленую, Мп2 - бледно-розовую, а разбавленные раств ры бесцветны, Сг3 - зеленую или фиолетовую, растворы хром тов-желтую, дихроматов - оранжевую. К малорастворимь солям в воде относят сульфиды, фосфаты, цианиды, гексациан ферраты, карбонаты и др. Хорошо растворяются в воде сульфат хлориды, бромиды, иодиды, нитраты, ацетаты, роданиды. 

К III аналитической группе катионов относятся ионы металлов алюминия, хрома, железа, марганца, цинка, кобальта, никеля и других. От lull групп катионы этой группы отличаются тем, что их сульфиды практически не растворимы в воде, но растворяются в разбавленных кислотах или разлагаются водой с образованием растворимых в кислотах гидроокисей. 

К 1П аналитической группе катионов относятся ионы металлов Al, Cr, Ti, Fe, Mn, Zn, Ni, Co. От lull групп катионов эта группа отличается нерастворимостью соответствующих сульфидов. Последние, однако, легко растворяются в разбавленных кислотах, что отличает III группу от IV и V групп. 

К IV аналитической группе катионов относятся ионы Ag, Pb, Hg, ( Hg), Cu, Cd и Bi 4 Подобно катионам III группы, эти катионы образуют сульфиды, практически нерастворимые в воде. 

К 1П аналитической группе катионов относятся ионы металлов А1, Сг, Ti, Fe, Mn, Zn, Ni, Co и некоторые другие катионы менее распространенных элементов. 

Ко второй аналитической группе катионов ( Ва2, Sr2, Са2) относятся катионы, осаждаемые в присутствии водного раствора NHs NH4C1 общим групповым реагентом ( NH4) 2CO3 в виде нерастворимых в воде карбонатов. Катионы 2 - й группы в отличие от катионов 3, 4 и 5 - й групп не осаждаются сульфидом аммония или сероводородом в виде сульфидов. 

Ко второй аналитической группе катионов ( Ва2, Sr2, Са2) относятся катионы, осаждаемые в присутствии водного раствора NH3 NH4C1 общим групповым реагентом ( МН гСОз в виде нерастворимых в воде карбонатов. Катионы 2 - й группы в отличие от катионов 3, 4 и 5 - й групп не осаждаются сульфидом аммония или сероводородом в виде сульфидов. 

К I аналитической группе катионов относятся Li, Na, K, МНд, Mg и некоторые другие катионы. Все эти катионы не имеют общего группового реактива и поэтому они одновременно не могут быть осаждены каким-либо реактивом. Это отличает I группу катионов От всех остальных групп, имеющих групповые реактивы. 

К III аналитической группе катионов относят ионы, осаждаемые из нейтральных или щелочных растворов общим ( групповым) реактивом ( МН4Ь в виде нерастворимых в воде сульфидов и гидроокисей. 

К III аналитической группе катионов относят ионы, осаждаемые из нейтральных или щелочных растворов общим ( групповым) реактивом ( NH4) 0S в виде нерастворимых в воде сульфидов и гидроокисей. 

28. химические методы качественного анализа и условия проведения реакций.

В зависимости от метода качественного анализа меняется оборудование лаборатории и техника выполнения анализа. В связи с этим выделяют макроанализ, полумикроанализ, микроанализ, субмикроанализ, ультрамикроанализ. В макрометодах для проведения химических реакций используют колбы, химические стаканы, большие пробирки. При использовании большого количества анализируемого вещества данный метод малочувствительный, длительный при реализации и неэкономичный. Противоположностью является ультрамикроанализ, характеризующийся высокой чувствительностью, однако реакций, обладающих столь низким пределом обнаружения, на практике очень мало. Поэтому, в основном, в химических лабораториях используют микро- и полумикрометоды анализа.

По области применения аналитические реакции в качественном анализе делят на групповые и характерные. Групповые реакции служат для выделения из сложной смеси веществ определенных групп, называемых аналитическими. Применяемые при этом реагенты называют групповыми. Групповые реакции используют для обнаружения присутствия данной аналитической группы, для полного отделения одной аналитической группы от других групп, для концентрирования малых следовых количеств веществ, а также для отделения групп веществ, мешающих проведению анализа. Характерными называют аналитические реакции, свойственные данному веществу.

В качественном анализе выделяют две методики проведения полного анализа вещества: систематический анализ и дробный анализ.

Систематическим называют полный анализ исследуемого объекта, осуществляемый путем разделения исходной аналитической системы на несколько подсистем (групп) в определенной последовательности на основе сходства и различий аналитических свойств компонентов системы.

Дробный анализ вещества проводят с отдельными порциями раствора в присутствии всех остальных ионов или веществ. Для проведения дробного анализа необходимы специфичные качественные реакции, либо маскировка мешающих определению компонентов.

29.классификация катионов и анионов.

Классификация анионов

В основу классификации анионов легло образование нерастворимых в воде осадков солей бария и серебра, окислительно-восстановительные свойства, способность образовывать газообразные вещества и др. Все анионы делятся на три аналитические группы (табл. 5). I группа анионов - соли бария, нерастворимые в воде. Групповым реагентом является хлорид бария, имеющий нейтральную или слабощелочную реакцию. Ко II группе анионов относятся ионы, образующие малорастворимые соли серебра. Групповой реагент - AgNO3. К III группе относятся анионы, соли серебра и бария которых растворимы в воде.

Таблица 5

Группа

Групповой реагент

Анионы

I

BaCl2

B(OH)4-, CO32-, SiO32-, PO43-, AsO33-, AsO43-, SO42-, SO32-, S2O32-, F-, C2O42-, CrO42-

II

AgNO3

S2-, Cl-, Br-, I-, IO3-, SCN-

III

Нет

NO3-, NO2-, CH3COO-

Таблица сероводородная классификация катионов

Группы

Катионы, относящиеся к данной группе

Растворимость солей

Групповой реагент

I

K+, Na+, NH4+,Mg+2

Хлориды, карбонаты и сульфиды растворимы в воде

Нет

II

Ca+2, Ba+2

Карбонаты в воде нерастворимы

Карбонаты аммония в аммиачном буфере

III

Fe+3, Fe+2, Co+2, Mn+2, Zn+2, Al+3, Cr+3, Ni+2

Карбонаты сульфиды и гидроксиды нерастворимы в воде, но растворимы в разбавленных кислотах

Сульфид аммония

IV

Hg+, Hg+2, Ag+, Pb+2, Cu+2

Сульфиды нерастворимы в разбавленных кислотах

Сероводород в кислой среде

V

Sn+2, Sn+4, As+3, As+5, Sb+3, Sb+5

Сульфиды нерастворимы в разбавленных кислотах, но растворимы в сульфиде аммония

Сероводород в кислой среде

 

Таблица аналитические сигналы на катионы первой группы. 

Реагенты

Катионы

K+

Na+

NH4+

Mg+2

1

гексанитрокобальтат - IIнатрия Na3[Co(NO2)6]

Желтый кристаллический осадок K2Na[Co(NO2)6]

-

Желтый осадок

-

2

гексагидроксостибиат-V калия - K[Sb(OH)6]

-

Белый кристалличосадокNa[Sb(OH)6]

Белый аморфн. осадок

Белый кристаллич осадок Mg[Sb(OH)6]

3

Щелочи NаOH или КОН

-

-

выделение аммиака, запах

Mg(OH)2 белый аморфн.

4

реактив Несслера

-

-

Красно-бурый осадок

-

5

гидрофосфат натрияNa2HPO4

-

-

-

MgNH4PO4белый кристаллич

6

хромоген черный

-

-

-

Винно-красный раствор

 

Таблица аналитические сигналы на катионы второй группы.

Реагенты

Катионы

Са2+

Вa2+

1

(NH4)2CO3 + NH4Cl +  NH4OH

СаCO3

Белый осадок

ВaCO3

Белый осадок

2

(NH4)2C2O4

СаC2O4

Белый осадок

ВаC2O4

Белый осадок

3

щелочь(NаOH, КОН)

 

Са(ОН)2

Белый мелкокристаллическ

Ва(ОН)2

Белый мелкокристаллическ

4

раствор Н2SO4

СаSO4.2О

Белый игольчатый

ВаSO4

молочнобелый

5

К4[Fe(CN)6] + NH4OH

(NH4)2Ca[Fe(CN)6]

Белый кристаллический

-

6

K2CrO4  или K2Cr2O7 +СН3СООNа

 

-

ВаCrO

Желтый

мелкокристаллическ

30. количественный анализ (определение, осадительная и весовая формы, титрование, титрант, титр, аликвота, точка эквивалентности, конечная точка титрования, индикатор)

- Количественный анализ бывает - гравиметрический ( весовой) - титриметрический (объемный)

Точка эквивалентности (конечная точка титрования) в титриметрическом анализе момент титрования, когда число эквивалентов добавляемоготитранта эквивалентно или равно числу эквивалентов определяемого вещества в образце. В некоторых случаях наблюдают несколько точек эквивалентности, следующих одна за другой, например, при титровании многоосновных кислот или же при титровании раствора, в котором присутствует несколько определяемых ионов.

На графике кривой титрования присутствует одна или несколько точек перегиба, соответствующих точкам эквивалентности. Точкой окончания титрования (подобна точке эквивалентности, но не то же самое) считают момент, при котором индикатор изменяет свой цвет при колориметрическом титровании.

  • Индикатор в химии — вещество, дающее характерные (обычно цветные) химические реакции и употребляющиеся при анализе (например, лакмус, метилоранж, куркумин, фенолфталеин, розоловая кислота и др.) — см. химические индикаторы, — или элемент прибора, позволяющего получать характеристики для оценки состояния той или иной среды, например, pH-метр со стеклянным электродом.

Титриметрический метод анализа основан на определении вещества, после взаимодействия с раствором вещества в ходе химической реакции. Объемный метод анализа основан на законе эквивалентов.

Титриметрический анализ – метод определения количества вещества путем точного измерения объема растворов веществ, вступающих между собой в реакцию.

Титр – количество г. вещества содержащегося в 1 мл. раствора или эквивалентное определяемому веществу. Например, если титрH2SO4 равен 0,0049 г/мл, это значит, что каждый мл раствора содержит 0,0049 г. серной кислоты.

Раствор, титр которого известен, называется титрованным. Титрование– процесс добавления к исследуемому раствору или его аликвотной части эквивалентного количества титрованного раствора. При этом используются стандартные растворы –фиксаналы– растворы с точной концентрацией вещества (Na2CO3,HCl).

Реакция титрования должна отвечать следующим требованиям:

  1. высокая скорость реакции;

  2. реакция должна протекать до конца;

  3. реакция должна быть высоко стехиометричной;

  4. иметь удобный метод фиксирования конца реакции.

HCl+NaOH→NaCl+H2O

Главная задача титриметрического анализа – не только использовать раствор точно известной концентрации (фиксанал), но и правильно определить точку эквивалентности.

Существует несколько способов зафиксировать точку эквивалентности: