
- •История развития физиологии.
- •Цель, задачи, предмет физиологии.
- •Связь физиологии с другими науками.
- •Основные разделы физиологии.
- •Биологические и функциональные системы.
- •Возрастные особенности формирования и регуляции физиологических функций.
- •Принцип саморегуляции организма. Понятие о гомеостазе, гомеокинезе.
- •Физиология и биофизика возбудимых клеток. Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей.
- •Законы раздражения. Параметры возбудимости.
- •Действие постоянного тока на возбудимые ткани.
- •Строение и функции цитоплазматической мембраны клеток.
- •Механизмы возбудимости клеток. История исследования биоэлектрических явлений.
- •Классификация и структура ионных каналов цитомембраны. Механизмы возникновения мембранного потенциала и потенциала действия.
- •Механизм генерации потенциала действия.
- •Соотношение фаз потенциала действия и возбудимости.
- •Физиология мышц.
- •Ультраструктура скелетного мышечного волокна.
- •Механизмы мышечного сокращения.
- •Энергетика мышечного сокращения.
- •Биомеханика мышечных сокращений.
- •Влияние частоты и силы раздражения на амплитуду сокращения.
- •Режимы сокращения. Сила и работа мышц.
- •Утомление мышц.
- •Двигательные единицы.
- •Физиология гладких мышц.
- •Изменение структуры мышцы с возрастом.
- •Показатели силы и работы мышц в процессе роста.
- •Физиология процессов межклеточной передачи возбуждения. Проведение возбуждения по нервам.
- •Синоптическая передача. Строение и классификация синапсов.
- •Механизмы синаптической передачи. Постсинаптические потенциалы.
- •Особенности строения периферических синапсов.
- •Физиология центральной нервной системы. Классификация, строение и функции нейронов. Нейроглия.
- •Методы исследования функций цнс.
- •Свойства нервных центров.
- •Торможение в цнс.
- •Закономерности проведения возбуждения и процессов торможения в нервных центрах.
- •Механизмы координации рефлексов.
- •Частная физиология цнс. Функции спинного мозга.
- •Рефлексы спинного мозга.
- •Функции продолговатого мозга.
- •Функции моста и среднего мозга.
- •Функции промежуточного мозга.
- •Функции ретикулярной формации ствола мозга.
- •Функции мозжечка.
- •Функции базальных ядер.
- •Общий принцип организации движения.
- •Лимбическая система.
- •Функции коры больших полушарий.
- •Функциональная асимметрия полушарий.
- •Пластичность коры.
- •Электроэнцефалография. Ее значение для экспериментальных исследований и клиники.
- •Структурно-функциональные особенности вегетативной нервной системы.
- •Физиология желез внутренней секреции. Физиология гипофиза.
- •Передняя доля гипофиза.
- •Промежуточная доля гипофиза.
- •Задняя доля гипофиза.
- •Регуляция секреции гипофиза.
- •Гормоны щитовидной железы.
- •Физиология щитовидной железы.
- •Физиология паращитовидной железы.
- •Физиология поджелудочной железы.
- •Гормоны поджелудочной железы.
- •Регуляция секреции поджелудочной железы.
- •Физиология надпочечников.
- •Мозговое вещество надпочечников.
- •Кора надпочечников.
- •Физиология половых желез.
- •Регуляция деятельности половых желез.
- •Физиология системы крови.
- •Состав крови. Основные физиологические константы крови.
- •Состав, свойства и значение компонентов плазмы.
- •Механизмы поддержания кислотно-щелочного равновесия крови.
- •Строение и функции эритроцитов. Гемолиз.
- •Реакция оседания эритроцитов.
- •Гемоглобин. Его разновидность и функции.
- •Функции лейкоцитов.
- •Структура и функции тромбоцитов.
- •Регуляция эритро- и лейкопоэза.
- •Механизмы остановки кровотечения. Процесс свертывания крови.
- •Фибринолиз.
- •Противосвертывающая система.
- •Факторы, влияющие на свертывание крови.
- •Группы крови. Резус-фактор. Переливание крови.
- •Резус-фактор.
- •Защитная функция крови. Иммунитет. Регуляция иммунного ответа.
- •II курс. IV семестр. Физиология крови.
- •Цикл работы сердца. Давление в полостях сердца в различные фазы сердечной деятельности.
- •Физиологические свойства сердечной мышцы. Автоматия сердца.
- •Механизм возбудимости, автоматии и сокращений кардиомиоцитов.
- •Соотношение возбуждения, возбудимости и сокращения сердца. Нарушение ритма и функций проводящей системы сердца.
- •Механизмы регуляции сердечной деятельности.
- •Рефлекторная и гуморальная регуляция деятельности сердца.
- •Проявления сердечной деятельности. Механические и акустические проявления.
- •Электрокардиография (экг).
- •Движение крови по сосудам. Функциональная классификация кровеносных сосудов. Факторы, обеспечивающие движение крови.
- •Скорость кровотока.
- •Кровяное давление.
- •Артериальный и венозный пульс.
- •Механизм регуляции тонуса сосудов.
- •Центральные механизмы регуляции сосудистого тонуса. Сосудодвигательные центры.
- •Рефлекторная регуляция системного артериального кровотока.
- •Физиология микроциркуляторного русла.
- •Особенности кровообращения в сердце, мозге, легких, почках. Регуляция органного кровообращения.
- •Физиология дыхания.
- •Механизм внешнего дыхания.
- •Показатели легочной вентиляции.
- •Функции воздухоносных путей. Защитные дыхательные рефлексы. Мертвое пространство.
- •Обмен газов в легких.
- •Транспорт газов кровью.
- •Обмен дыхательных газов в тканях.
- •Регуляция дыхания. Дыхательный центр.
- •Рефлекторная регуляция дыхания.
- •Гуморальная регуляция дыхания.
- •Дыхание при пониженном атмосферном давлении. Гипоксия.
- •Дыхание при повышении атмосферного давления. Кессонная болезнь.
- •Гиперболическая оксигенация.
- •Физиология пищеварения. Значение пищеварения и его виды. Функции пищеварительного тракта.
- •Пищеварение в полости рта. Состав и физиологическое значение слюны.
- •Механизм образования слюны и регуляции слюноотделения.
- •Жевание.
- •Глотание.
- •Пищеварение в желудке.
- •Состав и свойства желудочного сока. Значение его компонентов.
- •Регуляция желудочной секреции.
- •Моторная и эвакуаторная функции желудка.
- •Методы исследования функций желудка.
- •Пищеварение в кишечнике. Роль поджелудочной железы в пищеварении.
- •Механизмы выработки и регуляции секреции панкреатического сока.
- •Функции печени. Роль печени в пищеварении.
- •Значение тонкого кишечника. Состав и свойства кишечного сока.
- •Полостное и пристеночное пищеварение.
- •Функции тонкой кишки.
- •Моторная функция тонкого и толстого кишечника.
- •Механизм всасывания веществ в пищеварительном канале.
- •Пищевая мотивация.
- •Физиология обмена веществ и энергии. Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ.
- •Методы измерения энергетического баланса организма.
- •Основной обмен.
- •Объщий обмен энергии.
- •Физические основы питания. Режимы питания.
- •Обмен воды и минеральных веществ.
- •Регуляция обмена веществ и энергии.
- •Терморегуляция.
- •Физиология процессов выделения.
- •Органы и процессы выделения.
- •Выделительная функция кожи.
- •Функции почек. Механизмы мочеобразования.
- •Регуляция мочеобразования.
- •Невыделительные функции почек.
- •Мочевыведение.
- •Физиология анализаторов. Общая физиология анализаторов.
- •Общий принцип строения анализаторов.
- •Основные функции анализаторов.
- •Классификация рецепторов.
- •Адаптация анализаторов.
- •Физиология зрительного анализатора.
- •Рецепторный аппарат зрительного анализатора. Структура и функции отдельных слоев сетчатки.
- •Фотохимические реакции в рецепторах сетчатки.
- •Цветовое зрение.
- •Аккомодация.
- •Аномалии рефракции глаза.
- •Физиология слухового анализатора.
- •Физиология вестибулярного анализатора.
- •Физиология соматосенсорного анализатора.
- •Физиология обонятельного анализатора.
- •Физиология вкусового анализатора.
- •Физиология боли.
- •Физиология высшей нервной деятельности. Врожденные формы поведения. Безусловные рефлексы.
- •Условные рефлексы, механизм образования, значение.
- •Безусловное и условное торможение.
- •Аналитико-синтетическая функция коры больших полушарий. Динамический стереотип.
- •Структура поведенческого акта.
- •Мотивации. Классификация. Механизмы возникновения.
- •Память и ее значение в формировании приспособительных реакций.
- •Физиология эмоций.
- •Функциональные состояния организма. Стресс, его физиологическое значение.
- •Физиологические механизмы сна. Значение сна. Теории сна.
- •Теории механизмов сна.
- •Виды высшей нервной деятельности.
- •Сигнальные системы. Функции речи. Речевые функции полушарий.
- •Мышление и сознание.
- •Формирование половой мотивации.
- •Адаптация, ее виды и периоды.
- •Физиологические основы трудовой деятельности.
Электрокардиография (экг).
Электрокардиография – это регистрация электрической активности мышцы сердца, возникает в результате ее возбуждения. Впервые запись электрокардиограммы произвел в 1903 году с помощью гальванометра голландский физиолог Эйнтховен. Он же первым в 1906 году использовал этот метод для диагностики. Электрокардиограф состоит из усилителя биопотенциалов и регистрирующего устройства. При электрокардиографии регистрируется разность потенциалов, возникающая между различными точками тела в результате возбуждения сердца.
Регистрация ЭКГ осуществляется с помощью биполярных и униполярных отведений. При биполярных оба электрода являются активными, т.е. регистрируется разность потенциалов между ними. При униполярных отведениях регистрируется разность потенциалов между активным электродом и индифферентными, имеющими нулевой потенциал. Его образуют другие электроды, соединенные вместе. Биполярными являются стандартные отведения, предложенные Эйнтховеном, а униполярными – усиленные отведения от конечностей. Стандартных отведений три:
I отведение – правая и левая рука;
II отведение – правая рука и левая нога;
III отведение – левая рука и левая нога.
При усиленных отведениях регистрируется разность потенциалов между активным электродом на одной из конечностей и индифферентным, образованным электродами на двух других конечностях. При отведении аVR активный электрод находится на правой руке, аVL – на левой, а аVF – левой ноге. Усиленные отведения служат для получения большей амплитуды элементов электрокардиограммы. Отведения от конечностей дают фронтальную проекцию распространения возбуждения. Его горизонтальную проекцию отражают грудные униполярные отведения по Вильсону. Таких отведений шесть: V1 – четвертое межреберье у правого края грудины, V2 – четвертое межреберье у левого края грудины, V3 – точка между V2 и V4; V4 – в пятом межреберье по среднеключичной линии, V5 – средней подмышечной линии.
Электрокардиограммой называется периодическая кривая, отражающая распространение возбуждения по миокарду. При стандартных отведениях она имеет следующий вид (рис3). На ЭКГ выделяют положительные и отрицательные зубцы P, Q, R, S, T, а также сегменты и интервалы. Направление определяют относительно изоэлектрической линии, при этом положительные направлены вверх.
Сегментами называются расстояния между двумя зубцами. Например, сегмент PQ – это промежуток между концом зубца P и началом зубца Q.
Интервалы включают один зубец и следующий за ним сегмент. Поэтому интервал PQ – это расстояние от начала зубца P до начала зубца Q.
Зубец P называется предсердным. Он отражает распространение возбуждения по обоим предсердиям. Его длительность 0,05-0,1 сек., а амплитуда до-0,25 мВ.
Сегмент PQ свидетельствует о полном охвате обоих предсердий возбуждением, а также его распространении на атриовентрикулярный узел и пучок Гиса. Общая длительность интервала PQ 0,12-0,18 сек.
Комплекс QRST называется желудочковым. Зубец Q отражает возбуждение сосочковых мышц, R – распространение возбуждения по желудочкам, а S – полный охват возбуждением обоих желудочков. Поэтому комплекс зубцов QRS называется электрической систолой желудочков. Его продолжительность 0,06-0,09 сек., а амплитуда зубца R 1-1,5 мВ.
Амплитуда зубца Q не должна превышать ¼ R, а его длительность быть не более 0,03 сек. Величина и продолжительность зубца S не изменяется.
Сегмент ST указывает на полный охват возбуждением миокарда желудочков. Зубец Т соответствует фазе реполяризации желудочков. Его амплитуда 0,05-0,25 мВ, а длительность 0,16-0,24 сек.
Теоретической основой электрокардиографии является дипольная теория. Согласно ей, каждое волокно миокарда является переменных электрическим диполем, т.е. его возбужденный конец заряжен отрицательно, а невозбужденный – положительно. Параметры этого диполя характеризуются направлением и величиной. Они изображаются стрелкой – вектором. Вектор направлен от минуса к плюсу, а его длина отражает величину разности потенциалов в диполе. Между возбужденным и невозбужденным участками диполя возникает градиент напряжения величиной 120 мВ. Он соответствует амплитуде потенциала действия. Так как миокард является функциональным синцитием, в каждый момент возбуждения сердца отдельные векторы суммируются и образуют интегральный вектор. Причем 90% векторов взаимно нейтрализуются. Исходя из этого, в основе регистрации ЭКГ лежат следующие принципы:
Общее электрическое поле сердца возникает в результате сложения полей всех мышечных волокон.
Каждое возбужденное волокно является диполем, параметры которого, т.е. направление и величину, можно отразить вектором.
В каждый момент времени векторы суммируются, и формируется интегральный вектор. За счет него возникает разность потенциалов между различными точками тела.
Направление и величина интегрального вектора определяется моментом возбуждения сердца. Когда начинается возбуждение миокарда предсердий, вектор направлен сверху вниз к верхушке сердца (от «-» к «+»). Формируется зубец Р. В момент возбуждения всей мускулатуры предсердий, разность потенциалов в них исчезает. Формируется сегмент PQ. В начале возбуждения миокарда межжелудочковой перегородки вновь возникает интегральный вектор, но уже направленный вверх, к основанию сердца. На ЭКГ появляется отрицательный зубец Q. При возбуждении большей части миокарда желудочков, вектор вновь меняет свое направление к верхушке сердца. Возникает зубец R. Последним возбуждается участок миокарда в области основания левого желудочка. Вектор будет направлен вверх, вправо и назад. Формируется отрицательный зубец S. Когда возбуждение полностью охватывает миокард обоих желудочков, разность потенциалов в них и вектор временно исчезает. На ЭКГ появляется сегмент ST. После этого начинается реполяризация миокарда желудочков. Поэтому вектор принимает положение вниз и влево. Формируется зубец Т.
Электрокардиография имеет исключительное значение для клинической кардиологии. Ритмичность сердечных сокращений определяют по интервалам R-R. Если расстояние между зубцами R одинаково, то ритм правильный.
Положение электрической оси определяют графически или визуально. Электрическая ось сердца совпадает с осью того отведения, при котором сумма зубцов комплекса QRS, имеющих положительный и отрицательный знак максимальна. Если ось отведения перпендикулярна электрической оси сердца, сумма положительного зубца R и отрицательного S равна нулю. Источник возбуждения в сердце определяется по Последовательности зубцов Р и комплексов QRS. В норме в I и II стандартном отведениях положительны и зубец Р, предшествующий комплексу QRS. Если возникает патологический источник возбуждения в нижних отделах предсердий, то возбуждение распространяется в обратном направлении снизу вверх. На ЭКГ во II и III стандартных отведениях появляются отрицательные зубцы Р, предшествующие QRS.
Функция проводимости оценивают по длительности зубца Р, интервала PQ и общей продолжительности комплекса QRS. Увеличение длительности этих зубцов и интервалов свидетельствует о замедлении проведения в соответствующих отделах сердца.
Дипольная теория послужила основой создания метода векторкардиографии. Если принять за основу предположение, что интегральный вектор во время одиночного цикла возбуждения исходит из одной точки, то конец этого вектора будет двигаться в пространстве, описывая векторную петлю. Эта векторная петля образуется на экране специального осциллоскопа кривую, состоящую из 3-х петель. Петля Р отражает распространение возбуждения по предсердиям, петля QRS по желудочкам, а петля Т – восстановление желудочков. Анализ векторкардиограммы производят путем определения длины, ширины петель и их площади.
Эхокардиография.
Эхокардиография (ЭхоКГ) – это исследование сердца с помощью ультразвуковых колебаний, отраженных от его различных сторон. С помощью ЭхоКГ можно исследовать структуру и работу клапанов, сокращения камер сердца, движение крови по ним. При эхокардиографии на область проекции сердца помещается датчик. В нем имеется пъезокристалл источник ультразвука и кристалл приемник отраженных ультразвуковых волн. Сигналы от последнего поступают на усилитель, преобразуются в изображение на экране монитора.