Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Palchun_V_T__Magomedov_M_M__Luchikhin_L_A_Rukovodstvo_po_prakticheskoy_otorinolaringologii_2011

.pdf
Скачиваний:
185
Добавлен:
20.03.2016
Размер:
11.12 Mб
Скачать

ФУНКЦИИ НАРУЖНОГО, СРЕДНЕГО И ВНУТРЕННЕГО УХА

Периферический отдел слухового анализатора выполняет две основные функции:

звукопроведение, т.е. доставку звуковой энергии к рецепторному аппарату улитки;

звуковосприятие - трансформация физической энергии звуковых колебаний в нервное возбуждение. Соответственно этим функциям различают звукопроводящий и звуковоспринимающий аппараты (рис.

5.20).

Звукопроведение осуществляется при участии ушной раковины, наружного слухового прохода, барабанной перепонки, цепи слуховых косточек, жидкостей внутреннего уха, мембраны окна улитки, а также рейсснеровой, базилярной и покровной мембран (рис. 5.21).

Основной путь доставки звуков к рецептору - воздушный. Звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают ее колебания. В фазе повышенного давления барабанная перепонка вместе с рукояткой молоточка движется кнутри. При этом тело наковальни, соединенное с головкой молоточка благодаря подвешивающим связкам смещается кнаружи, а длинный отросток наковальни - кнутри, смещая таким образом кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение звуковой волны происходит по пери-

Рис. 5.20. Схема звукопроводящей и звуковоспринимающей систем: 1 - наружное ухо; 2 - среднее ухо; 3 - внутреннее ухо; 4 - проводящие пути; 5 - корковый центр; А - звукопроводящий аппарат; Б - звуковоспринимающий аппарат

Рис. 5.21. Схема передачи звуковых колебаний к спиральному органу

лимфе лестницы преддверия, через геликотрему передается на барабанную лестницу и в конечном счете вызывает смещение мембраны окна улитки в сторону барабанной полости. Колебания перилимфы через преддверную мембрану Рейсснера передаются на эндолимфу и базилярную мембрану, на которой находится спиральный орган с чувствительными волосковыми клетками. Распространение звуковой волны в перилимфе возможно благодаря наличию эластичной

мембраны окна улитки, а в эндолимфе - вследствие эластичного эндолимфатического мешка, сообщающегося с эндолимфатическим пространством лабиринта через эндолимфатический проток.

Воздушный путь доставки звуковых волн во внутреннее ухо является основным. Однако существует и другой путь проведения звуков к кортиеву органу - костно-тканевой, когда звуковые колебания попадают на кости черепа, распространяются в них и доходят до улитки.

Различают инерционный и компрессионный типы костного проведения (рис. 5.22). При воздействии низких звуков череп колеблется как целое, и благодаря инерции цепи слуховых косточек получается относительное перемещение капсулы лабиринта относительно стремени, что вызывает смещение столба жидкости в улитке и возбуждение спирального органа. Это инерционный тип костного проведения звуков. Компрессионный тип имеет место при передаче высоких звуков, когда энергия звуковой волны вызывает периодическое сжатие волной капсулы лабиринта, что приводит к выпячиванию мембраны окна улитки и в меньшей степени основания стремени. Так же как и воздушная проводимость, инерционный путь передачи звуковых волн нуждается в нормальной подвижности мембран обоих окон. При компрессионном типе костной проводимости достаточно подвижности одной из мембран.

Колебание костей черепа можно вызвать прикосновением к нему звучащего камертона или костного телефона аудиометра. Костный путь передачи приобретает особое значение при нарушении передачи звуков через воздух.

Рис. 5.22. Инерционный (а) и компрессионный (б) механизмы костного проведения

Рассмотрим роль отдельных элементов органа слуха в проведении звуковых волн.

Ушная раковина играет роль своеобразного коллектора, направляющего высокочастотные звуковые колебания во вход в наружный слуховой проход. Ушные раковины имеют также определенное значение в вертикальной ототопике. При изменении положения ушных раковин вертикальная ототопика искажается, а при выключении их путем введения в наружные слуховые проходы полых трубочек полностью исчезает. Однако при этом не нарушается способность локализовать источники звука по горизонтали.

Наружный слуховой проход является проводником звуковых волн к барабанной перепонке. Ширина и форма наружного слухового прохода не играют особой роли при звукопроведении. Однако полное заращение просвета наружного слухового прохода или его обтурация препятствуют распространению звуковых волн и приводят к заметному ухудшению слуха.

В слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности во внешней среде, и это обеспечивает стабильность упругих свойств барабанной перепонки. Кроме того, в наружном слуховом проходе происходит избирательное усиление на 10-12 дБ звуковых волн частотой около 3 кГц. С физической точки зрения это объясняется резонансными свойствами

слухового прохода, имеющего длину около 2,7 см, что составляет 1/4 длины волн резонансной частоты.

ПОЛОСТЬ СРЕДНЕГО УХА И СЛУХОВАЯ ТРУБА

Для нормального функционирования системы звукопроведения необходимо, чтобы по обе стороны барабанной перепонки было одинаковое давление. При несоответствии давления в полостях среднего уха и в наружном слуховом проходе натяжение барабанной перепонки меняется, акустическое (звуковое) сопротивление возрастает и слух понижается. Выравнивание давления обеспечивается вентиляционной функцией слуховой трубы. При глотании или зевании слуховая труба открывается и становится проходимой для воздуха. Учитывая, что слизистая оболочка среднего уха постепенно поглощает воздух, нарушение вентиляционной функции слуховой трубы ведет к повышению наружного давления над давлением в среднем ухе, что вызывает втяжение барабанной перепонки внутрь. Это при-

водит к нарушению звукопроведения и вызывает патологические изменения в среднем ухе.

Помимо вентиляционной, слуховая труба выполняет также защитную и дренажную функции. Защитная функция слуховой трубы обеспечивается слизистой оболочкой, которая в хрящевом отделе особенно богата слизистыми железами. Секрет этих желез содержит лизоцим, лактоферин, иммуноглобулины - все эти факторы препятствуют проникновению возбудителей в барабанную полость. Дренажную функцию слуховая труба выполняет благодаря наличию мерцательного эпителия, движения ресничек которого направлены в сторону глоточного устья трубы.

Барабанная перепонка и слуховые косточки. По законам физики,

передача звуковых волн из воздуха в жидкие среды внутреннего уха сопровождается потерей до 99,9% звуковой энергии. Это связано с различным акустическим сопротивлением указанных сред. Структуры среднего уха - барабанная перепонка и рычажная система слуховых косточек - являются тем механизмом, который компенсирует потерю акустической (звуковой) энергии при переходе из воздушной среды в

жидкую. Благодаря тому, что площадь основания стремени (3,2 мм2) в окне преддверия значительно меньше рабочей

Рис. 5.23. Влияние соотношения площадей барабанной перепонки и основания стремени на увеличение силы звука

площади барабанной перепонки (55 мм2), увеличивается сила звуковых колебаний за счет уменьшения амплитуды волн (рис. 5.23). Увеличение силы звука происходит также в результате рычажного способа сочленения слуховых косточек. В целом давление на поверхности окна преддверия оказывается примерно в 19 раз больше, чем на барабанной перепонке. Благодаря барабанной перепонке и слуховым косточкам воздушные колебания большой амплитуды и малой силы трансформируются в колебания перилимфы с относительно малой амплитудой, но большим давлением.

Слуховые мышцы. В барабанной полости расположены две самые миниатюрные мышцы человеческого тела: напрягающая барабанную перепонку и стременная. Первая из них иннервируется тройничным нервом, вторая - лицевым, и это определяет различие в раздражителях, вызывающих сокращение той и другой мышцы, и их неодинаковую роль. Обеспечивая оптимальное натяжение отдельных элементов звукопроводящего аппарата, эти мышцы регулируют

передачу звуков разной частоты и интенсивности, и тем самым выполняют аккомодационную функцию. Защитная функциявнутриушных мышц обеспечивается тем, что при воздействии звуков большой мощности мышцы рефлекторно резко сокращаются. Это в конечном счете приводит к уменьшению звукового давления, передаваемого перилимфе.

Рис. 5.24. Схема резонансной теории слуха Гельмгольца

Этим рецепторы внутреннего уха предохраняются от сильных звуков.

Звуковосприятие представляет сложный нейрофизиологический процесс трансформации энергии звуковых колебаний в нервный импульс, его проведение до центров в коре головного мозга, анализ и осмысливание звуков.

Звуковая волна, дошедшая через окно преддверия до перилимфы, вовлекает ее в колебательные движения. Эти колебания восходят по завиткам улитки, по лестнице преддверия к ее вершине, где через геликотрему переходят на барабанную лестницу, по которой возвращаются к основанию улитки, вызывая прогиб вторичной барабанной перепонки. В колебания вовлекается базилярная мембрана и находящийся на ней спиральный орган, чувствительные волосковые клетки которого при этих колебаниях подвергаются сдавлению или натяжению покровной (текториальной) мембраной. Упругая деформация волосковых клеток лежит в основе их

раздражения, что означает трансформацию механических звуковых колебаний в электрические нервные импульсы.

Для объяснения происходящих во внутреннем ухе процессов рецепции звуков предложены различные теории слуха.

Пространственная (или резонансная) теория была предложена Гельмгольцем еще в 1863 году и основана на представлениях о периферическом анализе звука на уровне улитки. Теория допускает, что базилярная мембрана состоит из серии сегментов, каждый из которых резонирует в ответ на воздействие определенной частоты звукового сигнала. Входящий стимул, таким образом, приводит к вибрации тех участков базилярной мембраны, собственные частотные характеристики которых соответствуют компонентам стимула. По аналогии со струнными инструментами звуки высокой частоты приводят в колебательное движение (резонируют) участок базилярной мембраны с короткими волокнами у основания улитки, а звуки низкой частоты вызывают колебания участка мембраны с длинными волокнами у верхушки улитки (рис. 5.24).

Согласно резонансной теории, любой чистый тон имеет свой ограниченный участок восприятия на базилярной мембране. При подаче и восприятии сложных звуков одновременно начинает колебаться несколько участков мембраны.

Теория Гельмгольцавпервыепозволилаобъяснитьосновные свойства уха - способность определения высоты, громкости и тембра. В

свое время эта теория нашла много сторонников и до сих пор считается классической. Вывод Гельмгольца о том, что в улитке происходит первичный анализ звуков, нашел подтверждение в работах Л.А. Андреева. Согласно его данным, при разрушении верхушки улитки у собак наблюдается выпадение условных рефлексов на низкие звуки, при разрушении ее основного завитка - на высокие звуки.

Резонансная теория Гельмгольца получила подтверждение и в клинике. Гистологическое исследование улиток умерших людей, страдавших понижением слуха, позволило обнаружить изменения спирального органа в участках, соответствующих утраченной части

слуха. Вместе с тем современные знания не подтверждают возможность резонирования отдельных «струн» базилярной мембраны.

Вслед за теорией Гельмгольца появилось множество других пространственных теорий. Особый интерес представляет теория «бегущей волны»лауреата Нобелевской премии Бекеши (1960). Прямое изучение механических свойств базилярной мембраны показало, что ей не свойственна высокая механическая избирательность. Звуковые волны различных частот вызывают колебания мембраны на довольно больших ее участках. Звуки определенной высоты вызывают на базилярной мембране «бегущую волну», гребню которой соот-

Рис. 5.25. Схема теории «бегущей волны» Бекеши:

а - при высоких звуках; б - при низких звуках; FV - окно преддверия; FC - окно улитки; m.b. - базилярная пластинка

ветствует наибольшее смещение мембраны на одном из ее участков. Локализация этого участка зависит от частоты звуковых колебаний. Наиболее низкие звуки вызывают прогибание мембраны у верхушки улитки, звуки высокой частоты - в области основного завитка улитки (рис. 5.25). Базилярная мембрана больше всего смещается на гребне «бегущей волны» и, колеблясь, вызывает деформацию сдвига волосковых клеток спирального органа над этим участком мембраны. Отрицательным моментом этой теории является то, что с механической точки зрения невозможно объяснить способность

различать ухом огромное множество разных частот. По мнению П.П. Лазарева, при механическом раздражении волосковых клеток в них возникает химическая реакция, сила которой зависит от количества разлагающегося вещества (слухового пурпура); при этом освобождаются ионы, которые и вызывают процесс нервного возбуждения.

Гуморальная регуляция функции кортиева органа в определенной степени обеспечивается особыми клетками сосудистой полоски - апудоцитами, являющимися элементами системы эндокринной клеточной регуляции. Апудоциты продуцируют биогенные амины - серотонин, мелатонин и пептидные гормоны - адреналин, норадреналин.

Функция подкорковых слуховых центров изучена недостаточно. Через них осуществляется безусловная рефлекторная связь с двигательными реакциями в ответ на воздействие звука: повороты головы, глаз, кохлео-пальпебральный рефлекс Бехтерева, кохлеопупиллярный рефлекс Шурыгина и т.п. Роль корковых отделов слухового анализатора заключается в осуществлении высшего анализа звуковых сигналов и синтеза их в слитный звуковой образ. Корковый отдел не только принимает и анализирует информацию, поступающую от кохлеарных рецепторов, но и имеет эфферентную связь с улиткой, через посредство которой кора регулирует, настраивает функциональную активность рецепторного аппарата. С деятельностью центральных отделов в коре височной доли связаны такие свойства слухового анализатора, как ототопика, адаптация, маскировка и др.

ФУНКЦИЯ ВЕСТИБУЛЯРНОГО АНАЛИЗАТОРА

Вестибулярная функция зависит от деятельности вестибулярных рецепторов, расположенных в ампулах полукружных каналов и мешочках преддверия. Это интерорецепторы, воспринимающие информацию о положении тела или головы в пространстве, изме-

нении скорости и направления движения. Полный и тонкий анализ полученной от вестибулярных рецепторов информации