Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVETY_1-15.pdf
Скачиваний:
41
Добавлен:
20.03.2016
Размер:
7.42 Mб
Скачать

Конфликтные ситуации (обращение к одному и тому же модулю памяти) разрешаются коммутатором, начинающим обслуживать первым устройство с наибольшим приоритетом, например процессор с наименьшим номером. Каждый из процессоров может инициировать работу любого канала ввода-вывода.

Структура МПС с общей памятью наиболее универсальна: любая информация, хранимая в памяти системы, в равной степени доступна любому процессору и каналу ввода-вывода.

Отрицательное свойство МПС с общей памятью — большие затраты оборудования в коммутаторах (эти затраты пропорциональны произведению числа устройств, подключенных к памяти, и числа модулей памяти).

Как строятся мультипроцессорные системы с индивидуальной памятью?

В МПС с индивидуальной памятью каждый из процессоров обращается в основном к своему модулю памяти. Для обмена данными между подсистемами «процессор — модуль памяти» в процессорах предусмотрены блоки обмена, обеспечивающие передачу сегментов информации между общей памятью и модулем памяти. При этом блок обмена может работать как селекторный канал: операция обмена инициируется процессором, и передача данных выполняется с параллельной работой последнего. Принцип индивидуальной памяти позволяет исключить коммутаторы в интенсивно используемом канале «процессор — модуль памяти», вследствие чего увеличивается номинальное быстродействие процессоров и уменьшаются затраты оборудования по сравнению с системами с общей памятью.

Отрицательным последствием разделения памяти между процессорами является потеря ресурсов быстродействия в процессе обмена информацией между модулями памяти и общей памятью системы. Потери возникают, во-первых, из-за возможных приостановок работы процессоров для ожидания моментов окончания обмена данными с общей памятью и, во-вторых, из-за дополнительной загрузки модулей памяти операциями обмена.

.

Какие недостатки имеет структура МПС с общей памятью перед МПС с индивидуальной памятью?

Если, работа

каждого процессора МПС

связана с использованием в

основном ограниченного

подмножества

данных и

обращение к

остальным

данным происходит сравнительно

редко, то индивидуализация

памяти приводит

к экономии оборудования и

обеспечивает высокое

номинальное

быстродействие процессоров

в

системе.

Если каждый из процессоров почти

равновероятно обращается к любому сегменту данных,

МПС должна строиться по схеме с общей

памятью, исключающей необходимость в обмене информацией между модулями памяти

Характеристики МПС с общей памятью

Будем рассматривать мультипроцессорную систему (МПС) с общей памятью, в которой размещаются все программы и данные, используемые в процессе функционирования системы. Такая организация типична для управляющих систем, жесткие ограничения на время реакции которых исключают возможность размещения информации во внешней памяти. Будем считать, что в МПС используются одинаковые процессоры, то есть МПС – однородная система. Наличие общей оперативной памяти, в которой размещается вся необходимая информация, и однородность системы позволяют выполнять любую программу на любом процессоре, то есть любой процессор может принять на обслуживание любую заявку. Режим работы МПС, при котором каждый из процессоров может обслуживать любую заявку, называется режимом разделения нагрузки. При этом режиме каждый из N процессоров принимает на обслуживание N-ю часть заявок, то есть N-ю часть общей нагрузки.

Характеристики МПС с индивидуальной памятью

В МПС с индивидуальной памятью множество программ обслуживания и связанных с ними данных P={P1,…,PM} разделяется на подмножества , размещаемые в памяти соответствующих процессоров Пр1,…,ПрN. В результате этого каждый из процессоров ориентируется на обслуживание заявок определенных типов, а именно тех, программы обслуживания которых размещены в памяти процессора. Режим работы МПС, при котором каждый из процессоров обслуживает заявки определенных типов и не может обслуживать заявки других типов, называется режимом разделения функций.

Производительность мультипроцессорных систем с общей и индивидуальной памятью

Для увеличения производительности в состав ВС может вводиться несколько процессоров, способных функционировать параллельно во времени и независимо друг от друга и наряду с тем взаимодействовать между собой и с другим оборудованием системы. ВС, содержащие несколько процессоров, связанных между собой и с общим для них комплектом внешних устройств, называются мультипроцессорными системами (МПС).

Производительность МПС увеличивается по сравнению с однопроцессорной системой в результате того, что мультипроцессорная организация создает возможность для одновременной обработки нескольких задач или параллельной обработки различных частей одной задачи.

В ряде случаев требуется обеспечить непрерывность функционирования системы во времени. Это означает, что отказ в любом устройстве ВС, в том числе и в процессоре, не должен приводить к катастрофическим последствиям, то есть система должна сохранять работоспособность и после отказа. В таком случае все устройства ВС должны быть по крайней мере задублированы и система должна содержать не менее двух процессоров, то есть строиться, как МПС.

Наиболее существенен в структурной организации МПС способ связи между процессорами и памятью системы. В этом аспекте МПС разделяются на МПС с памятью общей (полнодоступной) и индивидуальной (раздельной).

28. Компьютерные сети и базовые топологии ЛВС

Топология (конфигурация) – это способ соединения компьютеров в сеть. Тип топологии определяет стоимость, защищенность, производительность и надежность эксплуатации рабочих станций, для которых имеет значение время обращения к файловому серверу.

Понятие топологии широко используется при создании сетей. Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий: широковещательные и последовательные.

Вшироковещательных топологиях ПК передает сигналы, которые могут быть восприняты остальными ПК. К таким топологиям относятся топологии: общая шина, дерево, звезда.

Впоследовательных топологиях информация передается только одному ПК. Примерами таких топологий являются: произвольная (произвольное соединение ПК), кольцо, цепочка.

При выборе оптимальной топологии преследуются три основных цели:

-обеспечение альтернативной маршрутизации и максимальной надежности передачи данных;

-выбор оптимального маршрута передачи блоков данных;

-предоставление приемлемого времени ответа и нужной пропускной способности.

При выборе конкретного типа сети важно учитывать ее топологию. Основными сетевыми топологиями являются: шинная (линейная) топология, звездообразная, кольцевая и древовидная.

Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в сети Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно

Виды топологий

Существуют пять основных топологий (рис. 3.1): общая шина (Bus); кольцо (Ring); звезда (Star); древовидная (Tree); ячеистая (Mesh).

Рис. 3.1. Типы топологий

Общая шина

Общая шина – это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом. Топология общая шина (рис. 3.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети.

В случае топологии Общая шина кабель используется всеми станциями по очереди:

Рис. 3.2. Топология Общая шина

1.При передаче пакетов данных каждый компьютер адресует его конкретному компьютеру ЛВС , передавая его по сетевому кабелю в виде электрических сигналов.

2.Пакет в виде электрических сигналов передается по «шине» в обоих направлениях всем компьютерам сети.

3.Однако информацию принимает только тот адрес, который соответствует адресу получателя, указанному в заголовке пакета. Так как в каждый момент времени в сети может вести передачу только одна PC, то производительности ЛВС зависит от количества PC, подключенных к шине. Чем их больше, тем больше ожидающих передачи данных, тем ниже производительности сети.

Однако нельзя указать прямую зависимость пропускной способности сети от количества PC, так как на нее также влияют:

·характеристики аппаратного обеспечения PC сети;

·частота, с которой передают сообщения PC;

·тип работающих сетевых приложений;

· тип кабеля и расстояние между PC в сети.

«Шина» – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе всей сети.

4.Данные в виде электрических сигналов распространяются по всей сети от одного конца кабеля к другому, и, достигая конца кабеля, будут отражаться и занимать «шину», что не позволит другим компьютерам осуществлять передачу.

5.Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливаются терминаторы (Т), поглощающие сигналы, прошедшие по «шине»,

6.При значительном расстоянии между PC (например, 180 м для тонкого коаксиального кабеля) в сегменте «шины» может наблюдаться ослабление электрического сигнала, что может привести к искажению или потере передаваемого пакета данных. В этом случае исходный сегмент следует разделить на два, установив между ними дополнительное устройство – репитер (повторитель), который усиливает принятый сигнал перед тем, как послать его дальше.

Правильно размещенные на длине сети повторители позволяют увеличить длину обслуживаемой сети и расстояние между соседними компьютерами. Следует помнить, что все концы сетевого кабеля должны быть к чему-либо подключены: к PC, терминатору или повторителю.

Разрыв сетевого кабеля или отсоединение одного из его концов приводит к прекращению функционирования сети. Сеть «падает». Сами PC сети остаются полностью работоспособными, но не могут взаимодействовать друг с другом. Если ЛВС на основе сервера, где большая часть программных и информационных ресурсов хранится на сервере, то PC, хотя и остаются работоспособными, но для практической работы малопригодны.

Шинная топология используется в сетях Ethernet, однако в последнее время встречается редко.

Кольцо

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис. 3.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто.Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Рис. 3.3. Топология Кольцо

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях Token Ring кабельная ветвь из центрального концентратора называется MAU (Multiple Access Unit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо.

Звезда

Звезда – это топология ЛВС (рис. 3.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправного узла. Однако, если неисправен центральный узел, вся сеть выходит из строя.

Рис. 3.4. Топология Звезда

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Примером звездообразной топологии является топология Ethernet с кабелем типа Витая пара 10BASE-T, центром Звезды обычно является Hub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Вовторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте.

Сравнительные характеристики базовых сетевых топологий представлены в табл. 3.1.

Топология

Преимущества

Недостатки

1

2

«Шина»

- экономный расход кабеля;

- недорогая и несложная в использовании среда передачи;

-простота и надежность;

-легкая расширяемость

«Кольцо» - все PC имеют равный доступ;

- количество пользователей не сказывается на производительности

«Звезда» - легко производить монтаж сети или модифицировать сеть, добавляя новые PC;

3

-при значительных объемах трафика уменьшается пропускная способность;

-трудная локализация проблем;

-выход из строя любого сегмента кабеля остановит работу всей сети

-выход из строя одной PC выводит из строя всю сеть;

-трудно локализовать проблемы;

-изменение конфигурации сети требует остановки всей сети

Выход из строя или отключение питания концентратора (коммутатора) выводит из строя всю сеть; большой расход кабеля

-централизованный контроль и управление;

-выход из строя одного PC или одного сегмента кабеля не влияет на работу всей сети

29.Методы доступа к общей шине в ЛВС(Херня какая-то нашлась, сорян)

По методам доступа в сети выделяются такие наиболее распространенные сети, как Ethernet, ARCnet, Token Ring.

Метод доступа Ethernet, пользующийся наибольшей популярностью, обеспечивает высокую скорость передачи данных и надежность. Для него используется топология «общая шина», поэтому сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными станциями, подключенными к общей шине. Но поскольку сообщение включает адреса станций отправителя и адресата, то другие станции это сообщение

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]