Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механика грунтов.docx
Скачиваний:
108
Добавлен:
18.03.2016
Размер:
2.46 Mб
Скачать

24. Виды давлений в грунтовом массиве

(природное давление)

Вертикальные давления, возникающие в грунтовом массиве от собственного веса грунта, возрастают пропорционально глубине рассматриваемого слоя. В соответствии с этим эпюра напряжений по глубине однородного слоя грунта будет иметь вид треугольника, а при нескольких неоднородных слоях изобразится ломаной линией.

Вертикальное давление на глубине z будет равно:

,

где n – число разнородных грунтовых напластований;

gi – удельный вес грунта в i-ом слое, кН/м3;

hi – толщина i-го слоя грунта, м.

Например, для рассмотренного разреза:

;

;

.

В слоях, расположенных ниже уровня грунтовых вод, удельный вес грунта водопроницаемых грунтов принимается уменьшенной за счет взвешивающего действия воды

,

где γs – удельный вес частиц грунта; е – коэффициент пористости грунта.

Тогда .

При наличии слоя водонепроницаемого грунта (например, глины в твердом и полутвердом, суглинки в твердом состоянии) который является водоупором, давление на его кровле будет складываться из давления грунта и гидростатического давления столба воды

;

.

26 Испытания грунта в приборе трехосного сжатия (стабилометре).

Напряжения от собственного веса грунта. Вертикальные напряжения от собственного веса грунта называют бытовыми давлениями, а график их изменения по глубине – эпюрой бытовых давлений. Напряжения от собственного веса грунта определяются на основании следующих упрощающих гипотез: 1) напряженным состоянием грунта при действии его собственного веса является осесимметричное компрессионное сжатие; 2) вертикальные напряжения в грунте определяются суммированием напряжений от веса элементарных слоев грунта; 3) грунт, находящийся ниже уровня грунтовых вод, испытывает взвешивающее действие воды; 4) слой грунта, находящийся ниже водоносного слоя, называется водоупором и испытывает на своей поверхности гидростатическое давление водяного столба.

Испытания цилиндрических образцов грунта проводятся в условиях осесимметричной деформации, в рабочей камере, схема которой показана на рис. 1 а. Образец грунта имеет отношение высоты к диаметру, как правило, не менее 2. Обычно диаметр образцов принимается равным 38 или 50 мм, значительно реже, диаметром 100 мм. При испытании крупнообломочных грунтов используются образцы с диаметром 200 мм и более. Трёхосному (объёмному) напряжённому состоянию грунт подвергается в стабилометре. Основные положения методики заключаются в следующем. В начале опыта создается гидростатическое равновесие главных напряжений. Затем ступенями образец грунта загружается вертикальной нагрузкой, при которой боковое давление сохраняется постоянным. Испытание проводится до разрушения образца. В результате каждого опыта определяются основные характеристики сжимаемости: модуль общей деформации и коэффициент поперечного расширения (коэффициент Пуассона). Таким образом, образец грунта в стабилометре будет находиться в объемно-напряжённом состоянии.  Если вырезать из образца грунта элементарный параллелепипед с гранями перпендикулярно главным нормальным напряжениям Р1 и Р2, то такой образец будет испытывать лишь сжатие со всех сторон без возможности разрушения. Однако параллелепипед грунта ориентированный под углом ? по своим граням будет испытывать кроме сжимающих усилий Р? еще касательные усилия ?? (касательные напряжения). Именно касательные напряжения ?? вызывают смещение отдельных частиц грунта относительно друг друга и приводят к разрушению образца грунта в целом. В момент такого разрушения или предельного состояния грунта определяются его прочностные и деформационные свойства.  Проведение испытаний или доведение образца грунта до разрушения (предельного состояния) зависит от соотношения значений главных нормальных напряжений и условий испытаний. В практике исследований используется большое число стабилометров различной модификации и размеров в зависимости от решения поставленной задачи. Так на левой фотографии представлен прибор стабилометр, предназначенный для исследования мелкодисперсных грунтов. На правой фотографии также представлен стабилометр, но уже для исследования крупнодисперсных грунтов. Р1 ? Рполн ? Р2- Общее уравнение эллипса. Напряжённое состояние в элементарном образце грунта (в данной точке) весьма наглядно отображается при помощи эллипса напряжений, построенного на осях главных напряжений.                            a)                                     б) Рис. 1. Конструкция рабочей камеры (а) и схема нагружения образца грунта (б) Существует два типа приборов. Прибор типа А используется при определении прочностных и деформационных характеристик песчаных и глинистых грунтов в условиях предварительного изотропного обжатия (консолидации), т.е. когда . Прибор типа Б рекомендуется использовать при определении прочностных и деформационных характеристик грунтов в условиях предварительной анизотропной консолидации, т.е. когда . В последнем приборе возможно проведение испытаний и в условиях изотропного сжатия. В России принято приборы трехосного сжатия называть стабилометрами. Стабилометр типа А, рекомендуется использовать для определения характеристик прочности грунта, а стабилометр типа Б как для прочностных, так и деформационных характеристик грунтов. В ГОСТ 12248-96 приведена методика, которая позволяет применять стабилометр типа А для определения прочностных и деформационных характеристик грунтов. В стабилометре типа А можно провести испытания только при изотропной консолидации (), а в стабилометре типа Б, как при изотропной, так и анизотропной консолидации (). Специальные устройства подключаются к стабилометру и позволяют управлять как измерением изменения объема образца по величине объема жидкости вытесняемой из рабочей камеры стабилометра (или образца), так и величину обратного давления, создаваемого внутри образца грунта . Первое устройство выполняет автоматический контроль управление/измерение изменением объема или давления. Второе устройство выполняет подобную функцию, но в ручном режиме контроля изменения объема образца и обратного давления. Преимущество стабилометров с непрерывным нагружением осевой нагрузки (мм/мин) заключается в том, что эти испытания позволяют определить следующие параметры прочности: критическое значение угла внутреннего трения,?; пиковое значение угла внутреннего трения,?max; остаточное значение угла внутреннего трения, ?rest; угол дилатанции, ?, силу сцепления с. Испытания при статическом нагружении дают только критическое значение угла внутреннего трения, ?, и силы сцепления с. В тоже время, в отличие от компрессионных приборов, испытания в стабилометре можно провести в условиях близких к природным, учитывая начальное напряженное состояние в естественном массиве грунта Боковое давление, которое не регулируется в одометре, в стабилометре принимается равным горизонтальным напряжениям на глубине отбора монолита грунта, а вертикальные напряжения задаются равными бытовым (от собственного веса вышележащих слоев грунта). 

27 Фазы напряженного состояния грунта при беспрерывном возрастании нагрузок (зависимость S=f(p))

Рассмотрим типичный график развития осадки фундамента по мере его нагружения статической нагрузкой (см. схему). 1 фаза-линейного деформирования, При увеличении нагрузки осадка происходит линейно. 2 фаза-фаза сдвигов, 3 фаза-пластического течения Фазы напряженного состояния. Первая фаза напряженного состояния грунта носит название фазы уплотнения. В строительном отношении такое состояние грунта будет полезным, так как грунт в фазе уплотнения приобретает более плотную структуру и будет давать меньшие осадки. При уплотнении зависимость между общими деформациями и удельным давлением (сжимающим напряжением) с достаточной для практических целей точностью может быть принята линейной. Уплотнение грунта под нагрузкой может продолжаться еще при нескольких ступенях нагрузки, однако при достижении ее некото­рой величины возникает все больше скольжений (сдвигов) между частицами грунта, так как в отдельных местах сопротивлении сдвигу преодолеваются и скольжение между частицами постепенно формируются в отдельные площадки скольжения и зоны сдвигов. Конец фазы уплотнения и начало образования зон сдвигов, возникающих первоначально у краев площади загрузки, где сдвигающие напряжения наи­большие, являются характернейшими показателями механических свойств грунтов и соответствуютначальной критической нагрузке на грунт в данных условиях загружения. При дальнейшем увеличении нагрузки наступает вторая фа­за— фаза сдвигов, переходящая в пластическое или прогрессирующее течение, выпирание, просадку и подобные недопустимые деформации. График развития осадки фундамента в зависимости от его степени нагружения. По мере нагружения основания статической нагрузкой, развитие осадки происходит неравномерно. При давлениях Р < Рн.кр.деформирование основания происходит линейно - I фаза – фаза уплотнения грунтов; При давлениях Рн.кр. < Р < Рпр. деформирование основания происходит не линейно - II фаза – фаза сдвигов (фаза развития пластических деформаций). -Рн.кр. – начальная критическая нагрузка;  -Рпр. – предельное давление на основание.