Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.docx
Скачиваний:
72
Добавлен:
18.03.2016
Размер:
616.95 Кб
Скачать

27) Природные (естественные) источники электромагнитных полей

Природные (естественные) источники ЭМП делят на следующие группы:

электрическое и магнитное поле Земли;

радио излучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);

атмосферное электричество;

биологический электромагнитный фон.

Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы. Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально. Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

Атмосферное электричество – это электрические явления в земной атмосфере. В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца. Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

Внеземные источники включают излучения за пределами атмосферы Земли.

Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц. Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт. Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

Антропогенные источники электромагнитных полей

Антропогенные источники делятся на 2 группы:

Источники низкочастотных излучений (0 - 3 кГц)

Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

Основными техногенными источниками являются:

бытовые телеприёмники, СВЧ-печи, радиотелефоны и т.п. устройства;

электростанции, энергосиловые установки и трансформаторные подстанции;

широкоразветвлённые электрические и кабельные сети;

радиолокационные, радио- и телепередающие станции, ретрансляторы;

компьютеры и видеомониторы;

воздушные линии электропередач (ЛЭП).

Электрический заряд - это физическая величина, определяющая интенсивность электромагнитных взаимодействий.

Единица заряда - [q] кулон.

Свойства электрического заряда :

1. Электрический заряд не является знакоопределенной величиной, существуют как положительные, так и отрицательные заряды.

2. Электричесий заряд - величина инвариантная. Он не изменяется при движении носителя заряда.

3. Электричесий заряд аддитивен.

4. Электричесий заряд кратен элементарному. q = Ne. Это свойство заряда называется квантованностью.

5. Суммарный электричесий заряд всякой изолированной системы сохраняется. Это свойство есть закон сохранения электрического заряда.

 

Закон сохранения электрического заряда - электрические заряды не создаются и не исчезают, а только передаются от одного тела к другому или перераспределяются внутри тела.

28) Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношениюсилы действующей на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда :

.

Напряжённость гравитацио́нного по́ля — векторная величина, характеризующая гравитационное поле в данной точке и численно равная отношению силы тяготения, действующей на тело, помещённое в данную точку поля, к гравитационной массе этого тела:

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, создаваемых каждым из этих зарядов в отдельности. В этом заключается принцип независимости действия электростатических полей или принцип суперпозиции (наложения) полей.

Гравитационные поля подчиняются принципу суперпозиции. Согласно этому принципу гравитационное поле, возбуждаемое какой-либо массой, совершенно не зависит от наличия других масс. Кроме того, гравитационные поля, создаваемые несколькими телами, накладываются, не изменяя друг друга. Поэтому напряженность поля, создаваемого несколькими точечными источниками, равна сумме напряженностей полей, создаваемых каждым из источников:

 

G = G1 + G2 + ... 

\

29) Электрический диполь — система двух равных по модулю разноименных точечных зарядов (), расстояние  между которыми значительно меньше расстояния до рассматриваемых точек поля. Плечо диполя — вектор , направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между зарядами. Электрический момент диполя (дипольный момент): .

Электри́ческий ди́польный моме́нт — векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системызаряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей.

30 Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L

(13.18)

Так как работа сил электростатического поля по замкнутому контуру равна нулю (работа сил потенциального поля), следовательно циркуляция напряженности электростатического поля по замкнутому контуру равна нулю.

31 Определим поток напряжённости поля электрических зарядов через некоторую замкнутую поверхность, окружающую эти заряды. Рассмотрим сначала случай сферической поверхности радиуса R, окружающей один заряд, находящийся в ее центре (рис. 13.6). Напряженность поля по всей сфере одинакова и равна

Силовые линии направлены по радиусам, т.е. перпендикулярны поверхности сферы , следовательно

т.к.  Тогда поток напряженности будет равен

Используя формулу напряжённости, находим

(13.6)

Окружим теперь сферу произвольной замкнутой поверхностью S’. Каждая силовая линия, пронизывающая сферу, пронижет и эту поверхность. Следовательно формула (13.6) справедлива не только для сферы, но и для любой замкнутой поверхности. Если произвольной поверхностью окружаем n зарядов, то очевидно, что поток напряженности через эту поверхность равен сумме потоков, создаваемых каждым из зарядов, т.е.

или

(13.7)

Таким образом, полный поток вектора напряженности электростатического поля через замкнутую поверхность произвольной формы численно равен алгебраической сумме свободных электрических зарядов, заключенных внутри этой поверхности, поделенной на . Это положение называется теоремой Остроградского - Гаусса. С помощью этой теоремы можно определить напряженность полей, создаваемых заряженными телами различной формы.

32)

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду: 

 - энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

 

- следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах: 

Гравитацио́нный потенциа́л — скалярная функция координат и времени, характеризующая гравитационное поле в классической механике. Имеет размерность квадрата скорости, обычно обозначается буквой . Гравитационный потенциал равен отношению потенциальной энергии материальной точки, помещённой в рассматриваемую точку гравитационного поля, к массе этой точки.

Движение частицы в гравитационном поле в классической механике определяется функцией Лагранжа, имеющей в инерциальной системе отсчета вид:

, где:  — масса частицы,  — координата частицы,  — потенциал гравитационного поля.

Подставляя выражение для лагранжиана L в уравнения Лагранжа:

,

получаем уравнения движения

.

33) В неоднородной диэлектрической среде имеет различные значения, изменяясь на границах диэлектриков скачкообразно (претерпевая разрыв). Это затрудняет применение формул, описывающих взаимодействие зарядов в вакууме. Что касается теоремы Гаусса, то в этих условиях она вообще теряет смысл. В самом деле, благодаря различной поляризуемости разнородных диэлектриков напряженности поля в них будут различными. Поэтому различно и число силовых линий в каждом диэлектрике (рис.14.6).

Часть линий, исходящих из зарядов, окруженных замкнутой поверхностью, будет заканчиваться на границе раздела диэлектриков и не пронижет данную поверхность. Это затруднение можно устранить, введя в рассмотрение новую физическую характеристику поля – вектор электрического смещения

(14.8)

Вектор направлен в ту же сторону, что и . В отличие от напряженности поля вектор имеет постоянное значение во всех диэлектриках. Поэтому электрическое поле в неоднородной диэлектрической среде удобнее характеризовать не напряженностью , а смещением . С этой целью вводится понятие линий вектора и потока смещения, аналогично понятию силовых линий и потока напряженности

или

(14.9)

Используя теорему Гаусса

домножим обе части на 

С учетом (14.8) получаем

(14.10)

Это уравнение выражает теорему Гаусса для вектора электрического смещения: полный поток вектора электрического смещения через произвольную замкнутую поверхность равен сумме свободных зарядов, заключенных в этой поверхности.

34) Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.

Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле. Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.

Свойства магнитного поля:  1. Магнитное поле возникает под воздействие движущих зарядов электрического тока. 2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция, которая является силовой характеристикой магнитного поля. 3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды. 4. Магнитное поле может быть постоянного и переменного типа

35) акон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

  Формулировка закона Био Савара Лапласа имеет вид: При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]