Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.docx
Скачиваний:
72
Добавлен:
18.03.2016
Размер:
616.95 Кб
Скачать

Механика

1)Измерение - процесс нахождения значения физической величины опытным путем с помощью средств измерения.

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Косвенные - это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями. 

Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. 

Окончательный результат измерения должен быть представлен в стандартной форме записи. Для этого:

1. Абсолютную погрешность измерения округляют до первой значащей цифры, если она не единица;

2. Если первая значащая цифра в абсолютной погрешности единица, то абсолютную погрешность представляют в виде числа с двумя значащими цифрами. Значащими цифрами числа называют все его цифры, начиная с первой слева, отличной от нуля.

3. Числовое значение результата измерения представляется, так чтобы и среднее значение и абсолютная погрешность имели одинаковое число десятичных знаков после запятой.

Среднее значение результата измерения округляют до того разряда, до которого округлена абсолютная погрешность.

4. Среднее значение результата представляют в виде числа, содержащего до запятой одну значащую цифру, умноженного на десять в соответствующей степени.

2)

3) Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели.Простейшей моделью является матери­альная точка — тело, обладающее массой, размерами которого в данной задаче мож­но пренебречь.

Система отсчета – совокупность системы координат и часов, связанных с телом, относительно которого изучается движение.

Векторный способ Положение материальной точки задается с помощью радиуса-вектора относительно некоторой неподвижной точки О.

Координатный способ

При описании этим способом с телом отчета связывают какую-либо систему координат (например, декартову).

- закон движения материальной точки

Естественный способ

В нем движение описывается с помощью параметров самой траектории, и он используется, когда траектория известна.

закон движения точки

 - средняя путевая скорость

 - путь

4) Траектория – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике.

Вектор перемещения (или просто перемещение) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Ско́рость — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени

Средняя скорость движения – это физическая величина, равная отношению вектора перемещения точки к интервалу времени, за который это перемещение произошло.

Мгновенной скоростью мгн называется скорость в данный момент времени.

Мгновенная скорость определяется как предел отношения вектора перемещения к интервалу времени, за который это перемещение происходит, при стремлении интервала времени к нулю:

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей[1].

Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

5)  Ускоре́ние — скорость изменения скорости, то есть первая производная от скорости по времени, векторная величина, показывающая, на сколько изменяется вектор скорости тела при его движении за единицу времени

В общем случае ускорение направлено под углом к скорости. Составляющая ускорения, направленная вдоль скорости, называется тангенциальным ускорением . Она характеризует изменение скорости по модулю.

Составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально) скорости, называется нормальным ускорением . Она характеризует изменение скорости по направлению.

Здесь R - радиус кривизны траектории в данной точке.

Тангенциальное и нормальное ускорение взаимноперпендикулярны, поэтому модуль полного ускорения

Углова́я ско́рость — векторная величина характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Углово́е ускоре́ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости движения материальной точки по окружности.

При вращении точки вокруг неподвижной оси, угловое ускорение по модулю равно[1]:

6) Си́ла — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивномутелу сила является причиной изменения его скорости или возникновения в нёмдеформаций и напряжений

Масса - величина, измеряющая количество вещества в теле, мера инерции тела по отношению к действующей на него силе

1 закон Ньютона

Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения..

2 закон Ньютона

Ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

3 закон Ньютона

Силы, с которыми тела взаимодействуют друг с другом, равны по модулю и направлены вдоль одной прямой в противоположные стороны.

7) Центр масс

        центр инерции, геометрическая точка, положение которойхарактеризует распределение масс в теле или механической системе. Координаты Ц. м. определяютсяформулами

         , 

        или для тела при непрерывном распределении масс

         

8)Внутренние силы – это силы взаймодействия между точками самой системы

Внешние силы – силы приложенные к точкам системы со стороны тел не пренадлежащих системе .

Замкнутые системы – системы где действуют только внутренние силы изолированные от внешних сил

консервати́вные си́лы (потенциальные силы) — это силы, работа которых не зависит от видатраектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки[1]. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.

9) Сила трения — это сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению.

  • Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.

  • Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.

  • Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.

  • сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя;

  • жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита),жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;

 При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь  — сила, которой растягивают (сжимают) стержень,  — абсолютное удлинение (сжатие) стержня, а — коэффициент упругости (или жёсткости).

10)механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергий, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, и имеет способность совершать механическую работу

Закон сохранения механической энергии утверждает, что если тело или система подвергается действию только консервативных сил, то полная механическая энергия этого тела или системы остаётся постоянной. В изолированной системе, где действуют только консервативные силы, полная механическая энергия сохраняется.[3]

Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальной точки и зависящая только от массы и модуля скорости материальных точек, образующих рассматриваемую физическую систему[1], энергия механической системы, зависящая от скоростей движения её точек в выбранной системе отсчёта. Часто выделяют кинетическую энергию поступательного и вращательногодвижения[2].

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[

Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжестизапасается в виде потенциальной энергии тела.

Кривая — зависимость потенциальной энергии от координаты.

Связь между энергией и массой неизбежно следует из закона сохранения энергии и того факта, что масса тела зависит от скорости его движения.

11)

Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

12) И́мпульс (Коли́чество движе́ния) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

13)

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

14) Мощность — это физическая величина, равная отношению работы ко времени, за который эта работа была выполнена. Коэффициент полезного действия (КПД) — это физическая величина, равная отношению полезной работы к полной работы. КПД обозначается буквой η и измеряется в процентах. Полезная работа всегда меньше полной. КПД всегда меньше 100%.

Работой A, совершаемой постоянной силой называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силыи перемещения (рис. 1.18.1): 

A = Fs cos α.

15) Моме́нт ине́рции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Тензор инерции — в механике абсолютно твёрдого тела — тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с его угловой скоростью:

где  — тензор инерции,  — угловая скорость,  — момент импульса

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

16) Теорема Гюйгенса — Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Кинетическая энергия вращательного движения — энергия тела, связанная с его вращением.

Основные кинематические характеристики вращательного движения тела — его угловая скорость () и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения z:

и кинетическая энергия

где Iz — момент инерции тела относительно оси вращения.

17) Момент силы — векторная физическая величина, равная векторному произведению радиус-вектора, на вектор этой силы

Плечо силы- величина, равная кратчайшему расстоянию от данной точки (центра) до линии действия силы. 

- Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела, равно импульсу момента всех внешних сил, действующих на это тело.

18) Момент импульса материальной точки относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где  — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта,  — импульс частицы.

Изменение во времени момента импульса системы равно суммарному моменту всех внешних сил

.

Закон изменения момента импульса: приращение момента импульса равно импульсу суммарного момента внешних сил за время 

 .

Закон сохранения момента импульса: момент импульса замкнутой системы, взятый относительно любой точки инерциальной системы отсчета, не изменяется при любых процессах, происходящих внутри данной системы

.

 - сохранение проекции импульса.

19) Рассмотрим действие внешней силы , приложенной к точке массой . За время элементарная масса проходит путь Работа силы на этом пути определяется проекцией силы на направление перемещения, которая очевидно, равна тангенциальной составляющей силы.

Но равна модулю момента силы относительно оси вращения. Работа , и будет положительна, если имеет такое же направление, как и  отрицательное, если направление векторов и  противоположны.

С учетом, что 

Работа всех сил, приложенных к телу

(5.13)

Полная работа

(

20) Упругими называют деформации, которые исчезают после прекращения действия сил, а тела восстанавливают свою форму и объем.

Пластическими называют деформации, которые сохраняются после прекращения действия сил, а тела не восстанавливают свою первоначальную форму и объем.

Предел упругости — максимальная величина механического напряжения, при которой деформация данного материала остаётся упругой, то есть полностью исчезает после снятия нагрузки.

21)

Поступательное движение

Вращательное движение

Перемещение

S

Угловое перемещение

φ

Линейная скорость

Угловая скорость

Ускорение

Угловое ускорение

Масса

m

Момент инерции

I

Импульс

Момент импульса

Сила

F

Момент силы

M

Таблицу можно продолжать и далее.

Работа: 

 Кинетическая энергия 

22) Неинерциа́льная систе́ма отсчёта — система отсчёта, в которой не выполняется первый закон Ньютона — «закон инерции», говорящий о том, что каждое тело, в отсутствие действующих на него сил, покоится либо движется по прямой и с постоянной скоростью. Всякая система отсчета, движущаяся с ускорением или поворачивающаяся относительно инерциальной, является неинерциальной. Второй закон Ньютона также не выполняется в неинерциальных системах отсчёта. Для того чтобы уравнение движения материальной точки в неинерциальной системе отсчёта по форме совпадало с уравнением второго закона Ньютона, дополнительно к «обычным» силам, действующим в инерциальных системах, вводят силы инерции.

Силы инерции — силы, обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета: , где — сила, действующая на тело со стороны других тел;

  — сила инерции, действующая на тело относительно поступательно движущейся НСО.  — ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе;

  — центробежная сила инерции, действующая на тело относительно вращающейся НСО.  — угловая скорость НСО относительно ИСО,  — расстояние от тела до центра вращения;

  — кориолисова сила инерции, действующая на тело, движущееся со скоростью  относительно вращающейся НСО.   — угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта).

23) В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу силы и ускорения можно разлагать на составляющие, использование которых приводит к существенному упрощению решения задач.

Например, нормальное и тангенциальное ускорения материальной точки определяются соответствующими составляющими силы, сообщающая материальной точке нормальное ускорение, направлена к центру кривизны траектории и потому называется центростремительной силой

24)

Первый постулат: законы физики имеют одинаковую форму во всех инерциальных системах отсчета. Этот постулат явился обобщением принципа относительности Ньютона не только на законы механики, но и на законы остальной физики. Первый постулат — принцип относительности.

Второй постулат: свет распространяется в вакууме с определенной скоростью с, не зависящей от скорости источника или наблюдателя. 

Эти два постулата образуют основу теории относительности А. Эйнштейна.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]