Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по гидравлике / Гидравлика. Лекция 6.ppt
Скачиваний:
325
Добавлен:
18.03.2016
Размер:
664.58 Кб
Скачать

Шестеренные насосы

Шестеренный насос – роторный насос с рабочими звеньями в виде шестерен (зубчатых колес), обеспечивающих геометрическое замыкание рабочих камер и предающих вращательный момент.

Шестеренные насосы применяются в гидроприводах как самостоятельные источники питания невысокого давления или как вспомогательные насосы для подпитки гидросистем.

Шестеренный насос состоит из корпуса, ведущей шестерни и ведомой шестерни, вала, оси, двух боковых крышек. Шестерни находятся в зацеплении и имеют одинаковые модули и число зубьев.

Корпус является статором, ведущая шестерня ротором, а ведомая – вытеснителем. Рабочие камеры образуются рабочими поверхностями корпуса, двух боковых крышек и зубьев шестерен. Корпус имеет полость всасывания и нагнетания.

Шестеренные насосы

Принцип работы шестеренного насоса следующий. В насосе полость всасывания находится с той стороны, где зубья шестерен выходят из зацепления. При выходе из зацепления зубьев шестерен объем полости увеличивается, и в полости создается разрежение. Происходит процесс всасывания рабочей жидкости. После этого каждая из шестерен перемещает в противоположных кольцевых направлениях рабочую жидкость, находящуюся во впадинах зубьев, из полости всасывания в полость нагнетания. Происходит процесс нагнетания, при котором встречные объемы жидкости сначала соединяются в полости нагнетания, а затем жидкость вытесняется из полости нагнетания на выход насоса зубьями шестерен, входящих в зацепление.

Шестеренные насосы

Рабочий объем шестеренного насоса находится по формуле:

 

qо = 2πm²zb,

 

где m – модуль зубьев; z – число зубьев шестерни; b – ширина венца шестерни.

Шестеренные насосы являются нерегулируемыми, так как параметры, определяющие рабочий объем насоса, постоянные.

Шестеренные насосы используются также в качестве гидромоторов.

Преимущества шестеренных насосов – простота устройства, надежность в эксплуатации, компактность и малая стоимость.

Недостатки шестеренных насосов – пульсация потока жидкости, чувствительность к перегреву, малый объемный КПД при высоких температурах, значительный шум.

Аксиально-поршневые насосы

Аксиально-поршневой насос – это роторный насос, у которого рабочие камеры образованы рабочими поверхностями цилиндров и поршней, а оси поршней параллельны (аксиальны) оси блока цилиндров или составляют с ней угол не более 45º.

Аксиально-поршневые насосы находят широкое применение в гидравлических трансмиссиях самоходных сельскохозяйственных и строительно-дорожных машин.

Аксиально-поршневые насосы в зависимости от расположения ротора разделяют на насосы с наклонным диском (оси ведущего звена и вращения ротора совпадают) и насосы с наклонным блоком (оси ведущего звена и вращения ротора расположены под углом).

Аксиально-поршневые насосы

Насосы с наклонным диском имеют наиболее простые схемы. Поршни связаны с наклонным диском точечным касанием или шатуном. Блок цилиндров с поршнями приводится во вращение от вала.

Для подвода и отвода рабочей жидкости к рабочим камерам в торцевом распределительном диске выполнены два дугообразных окна - всасывающее и нагнетательное. Для обеспечения движения поршней во время всасывания применяют принудительное ведение поршней через шатун, а для поршней с точечным касанием используют цилиндрические пружины.

Принцип работы насоса следующий. При вращении вала насоса крутящий момент передается блоку цилиндров. При этом из-за наличия угла наклона диска поршни совершают сложное движение – они вращаются вместе с блоком цилиндров и одновременно совершают возвратно-поступательное движение в цилиндрах блока, при котором происходят рабочие процессы всасывания и нагнетания.

Аксиально-поршневые насосы

При вращении вала по часовой стрелке рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с всасывающим окном.

Поступательное движение поршней в этих камерах происходит в направлении от распределительного диска. При этом объемы камер увеличиваются, и жидкость под действием перепада давлений заполняет их. Так происходит процесс всасывания.

Рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с нагнетательным окном. При этом поршни перемещаются по направлению к распределительному диску и вытесняют жидкость из рабочих камер.

Аксиально-поршневые насосы

Рабочий объем аксиально- поршневого насоса с наклонным диском определяют по формуле:

q0 = Sпhz = πd²/4 · zDtgβ ,

где Sп – площадь поршня; h – максимальный ход поршня (h = Dtgβ); z – число поршней; dп – диаметр поршня; D – диаметр окружности расположения осей цилиндров в блоке; β – угол наклона диска.

Рабочий объем насоса зависит от угла наклона диска.

Можно изменять рабочий объем, изменяя угол наклона диска. Чем больше угол наклона β, тем больше рабочий объем насоса. Предельно допустимый угол наклона диска не превышает обычно 25º.

Аксиально-поршневые насосы

Регулирование подачи аксиально-поршневого насоса достигается изменением угла наклона диска.

Аксиально-поршневые насосы обратимы: при подаче в них масла под давлением от другого насоса они становятся гидродвигателями вращательного движения.

Преимущества аксиально-поршневых насосов – стабильность параметров при длительной эксплуатации с переменными внешними условиями; высокие объемный и механический КПД; достаточная долговечность.

Недостатки аксиально-поршневых насосов – высокая стоимость; высокая чувствительность к вибрациям; повышенные требования к тонкости фильтрации рабочей жидкости.

Гидравлические цилиндры

Гидроцилиндры – объемный гидравлический двигатель с ограниченным возвратно- поступательным движением выходного звена.

В зависимости от конструкции рабочей камеры гидроцилиндры разделяют на поршневые, плунжерные, телескопические, мембранные и сильфонные.

Наибольшее применение в объемных гидроприводах получили поршневые цилиндры благодаря простой конструкции и высокой надежности. Рабочая камера поршневого гидроцилиндра образована рабочими поверхностями корпуса и поршня со штоком. В корпусе находится поршень, жестко соединенный со штоком.

Гидроцилиндры

Цилиндр имеет две полости - поршневую и штоковую. Поршневая полость – часть рабочей камеры, ограниченная рабочими поверхностями корпуса и поршня. Штоковая полость – часть рабочей камеры, ограниченная рабочими поверхностями корпуса, поршня и штока.

Принцип работы поршневого гидроцилиндра следующий. При соединении поршневой полости с напорной линией поршень со штоком под действием силы давления рабочей жидкости перемещается вправо. При этом одновременно происходит вытеснение рабочей жидкости из штоковой полости. При подводе рабочей жидкости в штоковую полость поршень со штоком под действием силы давления перемещается в противоположном направлении.