Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом_ПрокопенкоХН.docx
Скачиваний:
16
Добавлен:
18.03.2016
Размер:
196.87 Кб
Скачать

3.2 Кальпаин/кальпастатиновая система у крыс, подвергнутых глутамат-индуцированной нейродегенерации на фоне терапии потенциальными нейропротекторами

Для индуцирования патологической нейродегенерации нами была использована модель глутаматной токсичности, сопровождающей многие нейродегенеративные заболевания и нормальное старение. Глутамат – самый распространенный в центральной нервной системе возбуждающий нейромедиатор; около 40% всех синапсов головного мозга – глутаматергические (Fairman, Amara, 1999). Хотя глутамат является жизненно важным нейромедиатором, он также является и мощным нейротоксином, который может вызывать гибель нервных клеток (Kim et al., 2011). Глутамат освобождается из глутаматергических нервных окончаний в синаптические щели и в норме должен быть удален из них (Kanai, Hediger, 2003). Накопление избытка внеклеточного глутамата и последующая гиперстимуляция глутаматергических рецепторов приводит к увеличению продукции активных форм кислорода и азота, которые индуцируют оксидативный стресс и гибель нейронов (Ganel, Rothstein, 1999; Kim et al., 2011). Предполагается, что основной вклад в эксайтотоксичность вносит активация NMDA-рецепторов (Tanovic, Alfaro, 2006), которые являются Ca2+-каналами. В соответствии с ранее поставленными задачами, были получены следующие результаты:

1. Проявления нейродегенерации, индуцированной острым воздействием экзогенного глутамата, о которых судили по результатам гистоморфологии нервной ткани различных зон головного мозга (правого и левого полушарий, гиппокампа) и поведенческих тестов, менее выражены в сравнении с нейродегенерацией, индуцированной амилоидным бета-пептидом (. Нами не выявлено существенного повреждения тканей центральной нервной системы при использованной дозе эксайтотоксического агента, что подтверждается как микроскопическими, так и молекулярно-биологическими данными, вместе с тем, страдает когнитивная функция животных. Проведенное тестирование поведенческих реакций (водный лабиринт Морриса) позволило оценить степень нарушения когнитивной функции у экспериментальных животных. Так, в группе 3 (острое воздействие глутамата) нарушения были оценены как умеренные, а между группами животных 1, 2, 4 различия отсутствовали (нарушений не наблюдалось). Таким образом, в сравнении с проявлениями амилоидной токсичности нейротоксичность глутамата имеет менее выраженный характер.

2. Установлено, что глутаматная токсичность оказывает специфическое действие на характер ответной реакции различных протеолитических систем клетки и, как следствие, регулируемых ими процессов клеточной гибели и выживания. На изученной нами модели нейродегенерации показано, что уровень экспрессии генов лизосомальных протеиназ (катепсинов В, D и L), конститутивных субъединиц протеасомы, а также активность кодируемых ими ферментов достоверно не изменяются в гиппокампе и коре головного мозга крыс после острого воздействия глутамата, тогда как снижается интенсивность кальций-зависимого протеолиза.

Интрацеребральное введение глутамата привело к значительному (до 50%) снижению протеолитической активности кальпаинов, при этом тормозился и процесс их аутокаталитической активации, и активность полноразмерной и аутолизированной форм. Уровень ферментов и их внутриклеточного ингибитора, кальпастатина, при этом не изменялся, что свидетельствует о регуляторных воздействиях, по всей видимости, о снижении уровня внутриклеточного кальция. Наши результаты, в первом приближении, противоречат установленному учеными из мединститута Г.Хьюза в 2000 году механизму участия кальпаинов в нейродегенерации (Lee et al., 2000), который со временем находит все больше экспериментальных подтверждений и, по-видимому, в общих чертах универсален для большинства нейродегенеративных заболеваний. Согласно классическим представлениям, цитотоксический эффект агентов разной природы (глутамата, амилоидного бета-пептида и других белковых агрегатов), сопряжен с нарушением кальциевого гомеостаза (LaFerla, 2002), а избыток Са2+ в цитоплазме вызывает персистентную «патологическую» активацию кальпаинов (Goll et al., 2003; Araújo et al., 2007). Нерегулируемый гидролиз субстратов кальпаинов – структурных и регуляторных белков нервной ткани, в том числе проапоптотических – негативно сказывается на морфологии и функциях нейронов и приводит к подавлению базовых механизмов их выживания (Bezprozvanny, 2009; Vaisid et al., 2008; Vosler et al., 2008). Таким образом, роль кальпаинов в нейродегенерации реализуется на многих этапах – от образования токсичных конформеров клеточных белков в ходе их «патологического» процессинга кальпаинами до реализации программ клеточной гибели по путям апоптоза и(или) некроза. Однако, в последнее десятилетие все больше доказательств находит гипотеза о том, что вышеописанная последовательность событий в развитии кальпаин-зависимой нейродегенерации – лишь вторичное явление, а на ранних этапах нейропатологии имеет место дефицит кальция и кальций-регулируемых процессов, включая функциональную активность кальпаинов (Chen et al., 2001). По-видимому, этот этап кратковременен и протекает в отсутствие видимых признаков заболевания, но, вполне вероятно, на модели острой глутаматной токсичности мы смогли уловить именно эту фазу биохимических изменений в клетках; отдаленные последствия мы смогли бы проследить только в том случае, если бы перешли к модели хронической глутаматной токсичности, например, путем интрацеребрального микродиализа.

Полученные нами результаты свидетельствуют о том, что экспрессия гена лизосомальной протеиназы катепсина D CtsD у крыс, которым вводили глутамат в правый гиппокамп, практически не изменилась в изученных отделах мозга у самок крыс, но оказалась снижена у самцов. Так был получен неожиданный для нас результат, свидетельствующий о вероятном блокирующем эффекте глутамата на индукцию экспрессии катепсина D. Наши данные указывают на то, что у самок крыс введение глутамата не оказывало столь значительного повреждения в правом полушарии головного мозга, как у самцов. Полученные нами данные о половой специфике ответной реакции хорошо согласуются с данными литературы: исследования на крысах и мышах показывают существование половых различий в количестве погибших нейронов после фокального ишемического повреждения (окклюзия средней мозговой артерии).

3. Показано, что эстрадиол (потенциальный нейропротектор) оказывает влияние на уровень синтеза и протеолитической активности лизосомальных протеиназ (но не кальпаинов), а его введение животным, подвергнутым острому воздействию глутамата, приводит к активации протеиназ, отвечающих за аутофагию (лизосомальных катепсинов), и к восстановлению физиологического уровня активности кальпаиновой системы в мозге крыс, а также к улучшению других биохимических и поведенческих показателей у экспериментальных животных. Воздействие эстрадиола оказалось положительным при разных типах нейродегенерации (амилоидной и глутаматной).

Индивидуальное введение эстрадиола (группа 2, ложно-оперированные + эстрадиол) отразилось на уровне экспрессии гена CtsD (но не генов кальпаинов Capn1, Capn2) у животных, причем по-разному у самок и самцов. Так, у самцов экспрессия гена CtsD в левом гиппокампе увеличилась по сравнению с контролем более чем в 1,5 раза. Такое изменение в левом гиппокампе мы можем объяснить адаптивными механизмами, которые были индуцированы введением эстрогена после повреждения контралатерального гиппокампа введением физиологического раствора. По всей видимости, левый, неповрежденный гиппокамп был вынужден частично взять на себя выполнение функций поврежденной доли гиппокампа, что привело к адаптивному увеличению экспрессии гена катепсина D, о связи которого с когнитивными функциями известно из литературы (Payton et al., 2003; Payton, 2006). Аналогичное изменение у самцов крыс, получавших эстрадиол, было нами обнаружено в экспрессии гена CtsD в коре правого полушария, где экспрессия данного гена в 2,25 раза превышала контрольный уровень (р<0,01). Повышение экспрессии CtsD под влиянием эстрадиола может свидетельствовать об усилении аутофагических процессов в нейронах головного мозга крыс, необходимых, в частности, для получения пула свободных аминокислот и компенсации травматического повреждения. Отсутствие аналогичного эффекта у самок крыс можно объяснить изначально более высоким уровнем нейропротективного гормона эстрадиола в кровеносной системе и мозге. Увеличение экспрессии гена катепсина D под влиянием эстрадиола может быть одним из механизмов, позволяющим осуществлять адаптивные перестройки в нервной системе и способствующим пластическим изменениям в ней при повреждениях.

4. Установлено, что эффективность эстрогенной терапии при данном типе нейропатологии значительно выше у самок, чем у самцов. У самок крыс с экспериментальной неродегенерацией введение эстрадиола (группа 4) приводило к восстановлению утраченной активности кальпаинов до нормального уровня, обнаруженного у крыс групп 1 и 2; у самцов действие эстрадиола на фоне глутаматной интоксикации не было выявлено. У самок не наблюдались изменения экспрессии гена CtsD ни при изолированном введении глутамата (группа 3), ни при введении эстрадиола (группа 2). Однако совместное введение глутамата и эстрадиола (группа 4) привело к увеличению экспрессии гена катепсина D в коре правого полушария самок, где она была увеличена по сравнению с контролем приблизительно в 2,1 раза (р<0,01). Значительное повышение экспрессии катепсина в данном случае, по нашему мнению, следует считать адаптивной реакцией на повреждение, которая не была полностью подавлена глутаматом. Известно, что экспрессия гена катепсина D находится под контролем эстрогенов. Так, известно о жесткой регуляции экспрессии катепсина D в клетках эстроген-зависимых опухолей молочной железы (Rochefort et al., 1998; Cavaillès et al., 1993). Имеются также сведения о том, что эстрогены стимулируют транскрипцию гена катепсина D через элементы эстрогенового ответа, расположенные вблизи промоторной области гена (Cavailles et al., 1991).

У самок, в отличие от самцов, изменение экспрессии гена CtsD было отмечено только в группе 4, которой вводили и глутамат, и эстрадиол. Поскольку ни в одном случае, когда вводили один лишь глутамат, изменений экспрессии не наблюдалось, можно предположить, что в группе 4 изменение экспрессии гена CtsD было связано с введением эстрадиола и опосредовано эстрогеновыми рецепторами. При этом повышение экспрессии катепсина D в этом случае, по всей видимости, не может быть связано с аутофагической клеточной смертью. Различную реакцию на введение эстрадиола у самок и самцов крыс (у самок изменения выявлены только в правом неокортексе, тогда как у самцов – ещё и в левом гиппокампе) можно объяснить различным распределением эстрогеновых рецепторов в мозге крыс разного пола, а также их различной чувствительностью к нейрональному повреждению.

Мозг самок в значительной степени защищен от клеточной смерти (Alkayed et al., 1998; Rusa et al., 1999; Simpkins et al., 1997). Введение невысоких доз эстрадиола предотвращает апоптоз в коре мозга в области пенумбры как у самок, так и самцов крыс (Dubal et al., 1998; Rusa et al., 1999; Toung et al., 1998). В данной модели мозгового повреждения нейропротективная активность эстрадиола зависит от наличия рецепторов ER-альфа (Dubal et al., 2001; Rau et al., 2001). Экспрессия мРНК ER-альфа очень низка в коре мозга взрослых особей, однако после унилатерального ишемического повреждения уровень транскриптов гена ER-альфа в коре быстро повышался на поврежденной стороне мозга (Dubal et al., 2006). Активация гена ER-альфа не зависела от введения эстрадиола, хотя имелись некоторые различия в динамике увеличения экспрессии. Кроме того, повышение экспрессии гена ER-альфа является необходимым для нейропротективного эффекта эстрадиола, поскольку у самок мышей, нокаутированных по гену ER-альфа, эстрадиол не оказывал протективного воздействия (Dubal et al., 1999). У самцов мышей с фокальной ишемией мозга наблюдалась гораздо более значительная потеря нервных клеток, чем у самок, хотя нейропротективный эффект эстрадиола также отмечался (Alkayed et al., 1998; Toung et al., 1998).

Tаким образом, нами выявлен повышенный уровень экспрессии гена CtsD в коре правого полушария и в левом гиппокампе самцов крыс при введении эстрадиола, а также значительное повышение экспрессии этого гена в коре правого полушария самок крыс при введении эстрадиола на фоне эксайтотоксического повреждения. Показано, что эстрадиол защищает гиппокамп и кору мозга от избыточной гибели нейронов при эксайтотоксическом и травматическом повреждении. Нейропротективный эффект эстрадиола зависит от пола животных; у самок он более выражен.

5. Установлено, что одной из составляющих нейропротективного действия эстрадиола, помимо описанных ранее антиоксидантного и антиапоптотического действия, является активация лизосомального протеолиза (катепсинов) и стабилизации активности кальпаиновой системы, которая достигается, по-видимому, за счет нормализации кальциевого гомеостаза в тканях мозга. Многочисленные научные данные подтверждают гипотезу о нейропротективной роли аутофагии и указывают на то, что патогенные и аберрантные белки могут подвергаться секвестрированию и, возможно, разрушению в аутофагических вакуолях (Terman et al., 1999; Cuervo, Dice, 2000; Terman, Brunk, 2004; McCray, Taylor, 2008; Nixon, Yang, 2011). Так, данные иммуноэлектронной микроскопии свидетельствуют о солокализации катепсина D с амилоидными бляшками в коре головного мозга у пациентов с болезнью Альцгеймера (Cataldo, Nixon, 1990), а нами установлен факт их солокализации со скоплениями амилоида в мозге крыс – моделей болезни Альцгеймера (результаты первого этапа; Рендаков и др., в печати). В норме катепсины являются внутриклеточными протеолитическими ферментами, ассоциированными с лизосомами; однако обработка срезов мозга антителами к катепсину B и катепсину D показала, что высокая иммунореактивность этих ферментов обнаруживается также в амилоидных бляшках у модельных животных, а также сенильных амилоидных бляшках у человека. При этом внеклеточные сайты с катепсиновой иммунореактивностью не обнаруживаются в мозге контрольных пациентов соответствующего возраста, не имеющих неврологических заболеваний, также как и в мозге пациентов с болезнью Хантингтона или Паркинсона (Cataldo, Nixon, 1990).

Фармакологические препараты, избирательно воздействующие на протеолитические пути клеточной гибели и баланс внутриклеточного Са2+, в клинике пока отсутствуют. Вместе с тем, ряд эндогенных веществ, например, половые стероиды, обладают антиоксидантными, антиамилоидными, антиагрегантными свойствами и способны влиять на протеолитические каскады, в связи с чем могут быть перспективны для терапии нейродегенерации.

ВЫВОДЫ

В ходе выполнения дипломной работы выполнен ряд учебно-научных задач.

Проведен анализ литературных источников по исследуемой проблеме.

Освоены некоторые методические приемы выделения, определения активности, идентификации основных молекулярных форм кальций-активируемых протеиназ, количественной оценки их ингибитора кальпастатина в тканях млекопитающих (на примере крыс).

В эксперименте по моделированию болезни Альцгеймера у лабораторных животных (крыс) обнаружены изменения кальпаин / кальпастатиновой системы, направленные на повышение каталитической активности Са2+-зависимых протеиназ и тесно связанные с дисбалансом внутриклеточного Са2+. В связи с этим, результаты изучения предложенной модели нейродегенерации можно экстраполировать на широкий круг родственных нарушений.

Показано, что в тканях мозга (коре больших полушарий, гиппокампе) крыс присутствуют основные, типичные для большинства тканей млекопитающих внутриклеточные протеиназы кальпаины, при этом можно выделить особенности в профиле их экспрессии, энзиматической активности и соотношении молекулярных форм, характерные для различных тканей (тканеспецифичность), а также для здоровых и патологически измененных тканей. Наиболее подробные данные получены для кальций-активируемых протеиназ (кальпаинов), поскольку их роль в развитии нейродегенерации, как возрастной, так и патологической, несомненна, но детально к настоящему времени не изучена.

Анализ биохимических изменений в мозге животных с амилоид-индуцированной нейродегенерацией показал, что ведущую роль в развитии тканевой патологии (избыточной гибели нервных клеток по механизмам апоптоза и некроза) играет дизрегуляция кальпаиновой системы. Нарушения в работе указанной протеолитической системы вызваны, во-первых, снижением содержания в тканях их естественного ингибитора, кальпастатина, то есть нарушением баланса протеиназа / ингибитор, а, во-вторых, нарушением баланса внутриклеточного Са2+, сопровождающим развитие дегенеративных изменений во многих тканях, в том числе, нервной. В модельном эксперименте получены данные, подтверждающие возможность модулирования процесса нейродегенерации за счет введения половых стероидов (эстрадиола), обладающих, наряду с ранее показанным антиоксидантным и антиапоптотическим действием, способностью к избирательной регуляции Са2+-зависимых протеиназ в тканях.

Полученные данные отличаются новизной, дополняют имеющиеся в литературе сведения о протеолитических ферментах млекопитающих. Результаты актуальны как в области фундаментального естествознания для изучения основных компонентов протеолитического аппарата клетки и понимания базовых основ его функционирования в норме и патологии, так и в прикладном аспекте (биомедицина, фармацевтика) поиска подходов к регуляции протеолитических процессов, лежащих в основе патологических перестроек в тканях.

Сделан вывод о перспективности выбранного направления исследований, адекватности методических приемов для решения поставленных задач и о необходимости дальнейших исследований сложного баланса строго регулируемой физиологической и персистентной патологической активности кальпаинов, нарушение которого лежит в основе патофизиологии многих нейродегенеративных заболеваний.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]