
- •Курс общей физики,
- •Глава 1. Кинематика материальной точки
- •Глава 14. Диэлектрики. Электроемкость
- •Глава 30. Тепловое излучение
- •Глава 36. Строение и свойства атомного ядра
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4. Угловая скорость и угловое ускорение
- •Глава 2. Динамика материальной точки
- •2.1. Первый закон Ньютона. Масса. Сила
- •2.2. Основной закон динамики поступательного движения.
- •2.3. Третий закон Ньютона
- •2.4. Силы в механике
- •2.5. Закон сохранения импульса. Центр масс
- •Глава 3. Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •Глава4. Динамика вращательного движения твердого тела
- •4.1. Модель абсолютно твердого тела
- •4.2. Момент силы
- •4.3. Пара сил
- •4.4. Простые машины
- •4.5. Момент инерции
- •4.6. Кинетическая энергия вращения
- •4.7. Уравнение динамики вращательного движения твердого тела
- •4.8. Момент импульса и закон его сохранения
- •Глава 5. Элементы теории относительности эйнштейна
- •5.1. Преобразования Галилея.
- •5.2. Постулаты специальной (частной) теории относительности
- •5.3. Преобразования Лоренца
- •5.4. Следствия из преобразований Лоренца
- •5.5. Основной закон релятивистской динамики материальной точки
- •5.6. Закон взаимосвязи массы и энергии
- •Глава 6. Элементы механики жидкостей и газов
- •6.1. Давление в жидкости и газе
- •6.2. Уравнение неразрывности
- •6.3. Уравнение Бернулли и следствия из него
- •6.4. Ламинарный и турбулентный режимы течения жидкостей
- •6.5. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики
- •Глава 7.Основные положения молекулярно- кинетической теории
- •7.1. Введение
- •7.2. Законы идеального газа
- •2) Давление данной массы газа при постоянном объеме изменяется линейно с температурой:
- •7.3.Уравнение Клапейрона – Менделеева
- •7.4. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Глава 8. Закон максвелла о распределении молекул идеального газа по скоростям и энергиям
- •8.1. Введение
- •8.2. Закон Максвелла о распределении молекул идеального газа
- •8.3. Барометрическая формула. Распределение Больцмана
- •8.4. Среднее· число столкновений и средняя длина свободного пробега молекул
- •Глава 9. Реальные газы
- •9.1. Силы и потенциальная энергия межмолекулярного взаимодействия
- •9.2. Уравнение Ван-дер-Ваальса
- •9.3. Изотермы Ван-дер-Ваальса и их анализ
- •9.4. Внутренняя энергия реального газа
- •Глава 10. Свойства реальных жидкостей
- •10.1. Поверхностное натяжение
- •10.2. Явление смачивания
- •10.3. Давление под искривленной поверхностью жидкости
- •10.4. Капиллярные явления
- •Глава 11. Основы термодинамики
- •11.1. Введение
- •11.2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •В классической статистической физике выводится
- •11.3. Первое начало термодинамики
- •11.4. Работа газа при изменении его объема
- •11.5. Теплоемкость
- •11.6. Применение первого начала термодинамики к изопроцессам
- •Глава 12. Второе начало термодинамики
- •12.1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •12.2. Энтропия, ее статистическое толкование
- •12.3.Второе начало термодинамики
- •12.4. Тепловые двигатели и холодильные машины.
- •Электричество и магнетизм
- •Глава 13. Основы электростатики
- •13.1. Атомистичность заряда. Закон сохранения заряда
- •13.2. Закон Кулона
- •13.3. Поток вектора напряженности
- •13.4. Теорема Гаусса
- •13.5. Поле бесконечной однородно заряженной плоскости
- •13.6. Поле двух разноименно заряженных плоскостей
- •13.7. Поле бесконечно заряженного цилиндра
- •13.8. Работа сил электростатического поля
- •13.9. Потенциал
- •13.10. Связь между напряженностью электрического поля
- •13.11. Эквипотенциальные поверхности
- •13.12. Применение электростатики в строительстве
- •13.12.1.Покрытия, основанные на электростатических принципах
- •13.12.2.Строительные технологические процессы, которые сопровождаются образованием электростатических полей
- •Глава14. Диэлектрики. Электроемкость
- •14.1. Полярные и неполярные молекулы
- •14.2. Диполь в однородном и неоднородном электрических полях
- •14.3. Поляризация диэлектриков
- •14.4. Поле внутри плоской пластины
- •14.5. Электроемкость
- •14.6. Конденсаторы
- •14.7. Энергия системы зарядов
- •14.8. Энергия заряженного конденсатора
- •14.9. Энергия электрического поля
- •Глава 15. Постоянный электрический ток
- •15.1. Сила и плотность тока
- •15.2. Сторонние силы. Эдс.
- •15.3. Закон Ома
- •15.4. Разветвленные цепи. Правила Кирхгофа
- •Глава 16. Магнитное поле токов
- •16.1.Закон Ампера
- •16.2. Магнитное поле. Закон Био – Савара - Лапласа
- •16.3. Работа перемещения контура с током в магнитном поле
- •16.4. Сила Лоренца
- •16.5. Влияние магнитных полей на живые организмы
- •Глава 17. Поток вектора магнитной индукции. Теорема гаусса
- •17.2. Токи при замыкании и размыкании цепи
- •Глава18. Магнитное поле в веществе
- •18.1. Магнитные моменты электронов и атомов
- •18.2. Магнитные свойства вещества. Ферромагнетизм
- •18.3. Диамагнетизм
- •18.4. Парамагнетизм
- •Глава 19. Механические колебания
- •19.1.Гармонические колебания и их характеристики
- •19.2. Дифференциальное уравнение свободных колебаний
- •18.3.Скорость и ускорение гармонических колебаний
- •19.4. Энергия колебаний Кинетическая энергия материальной точки, совершающей гармонические колебания равна
- •19.5.Сложение гармонических колебаний
- •19.6. Сложение взаимно-перпендикулярных колебаний
- •Глава 20. Затухающие и вынужденные колебания
- •20.1. Дифференциальное уравнение затухающих колебаний
- •20.2. Вынужденные колебания
- •20.3.Резонанс вынужденных колебаний
- •Глава 21. Электромагнитные колебания
- •21.1 Свободные электромагнитные колебания
- •21.2.Затухающие колебания в электрическом колебательном контуре
- •21.3.Вынужденные электромагнитные колебания
- •21.4.Переменный электрический ток
- •21.5.Резонанс токов и напряжение в цепи переменного тока
- •21.6. Мощность, выделяемая в цепи переменного тока
- •Глава 22. Упругие волны
- •22.1.Волновые процессы. Продольные и поперечные волны
- •22.2.Уравнение бегущей волны
- •22.3. Фазовая скорость бегущей волны
- •22.4.Принцип суперпозиции волн. Групповая скорость
- •22.5.Интерференция волн
- •22.6.Стоячие волны
- •Глава 23. Акустика
- •23.1. Основные характеристики звуковых волн
- •23.2. Эффект Доплера
- •23.3.Применение ультразвука
- •Глава 24. Электромагнитные волны
- •24.1.Экспериментальное получение электромагнитных волн
- •24.2.Дифференциальное уравнение электромагнитной волны
- •24.3. Энергия электромагнитных волн. Импульс электромагнитного поля
- •Глава 25. Взаимодействие света с веществом
- •25.1. Основные законы оптики. Полное отражение
- •25.2. Поглощение и рассеяние света
- •25.3. Тонкие линзы. Изображение предметов с помощью линз
- •25. 4. Оптические приборы, используемые в строительной технике
- •25.4.1. Теодолиты
- •25.4.2. Микроскоп
- •25.4.3. Элементы электронной оптики
- •Глава 26. Природа света и его свойства. Интерференция света
- •26.1. Развитие представлений о природе света
- •26.2. Интерференция света
- •26.4. Применение интерференции света.
- •Глава 27. Дифракция света
- •27.1. Принцип Гюйгенса — Френеля
- •27.2. Метод зон Френеля. Прямолинейное распространение света
- •27.3. Дифракция Френеля на круглом отверстии и диске
- •27.4. Дифракция Фраунгофера на одной щели
- •27.5. Дифракция Фраунгофера на дифракционной решетке
- •27.6. Понятие о голографии
- •Глава 28. Рентгеновский анализ
- •28.1. Рентгеновские лучи
- •28.2. Источники рентгеновских лучей
- •28.3. Основные методы рентгеноструктурного анализа
- •Глава 29. Дисперсия и поляризация света
- •29.1. Видимый свет
- •29.2. Дисперсия света
- •29.3. Естественный и поляризованный свет
- •Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны.
- •29.4. Вращение плоскости поляризации
- •29.5. Применение поляризационных микроскопов
- •Глава 30. Основные характеристики светотехники
- •30.1. Энергия излучения. Поток излучения.
- •30.2. Кривая относительной спектральной чувствительности глаза
- •30.3. Телесный угол. Сила излучения
- •30.4. Сила света
- •30.5. Световой поток. Связь между энергетическими и световыми величинами
- •30.6. Освещенность
- •30.7. Яркость
- •30.8. Светимость
- •30.9. Законы освещенности
- •30.10. Фотометры
- •Глава 31. Тепловое излучение
- •31.1. Характеристики теплового излучения
- •31.2. Закон Кирхгофа
- •31.3. Законы Стефана — Больцмана и смещения Вина
- •31.4. Формулы Рэлея-Джинса и Планка
- •31.5. Оптическая пирометрия
- •31.6. Тепловые источники света
- •31.7. Теплообмен излучением между поверхностями в помещении
- •Глава 32. Фотоэффект. Двойственная природа света
- •32.1. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •32.2. Уравнение Эйнштейна для внешнего фотоэффекта
- •32.3. Масса и импульс фотона. Давление света
- •32.4. Эффект Комптона и его элементарная теория
- •32.5. Применение фотоэффекта
- •Глава 33. Основы квантовой механики
- •33.1. Корлускулярно-волновой дуализм свойств вещества
- •32.2. Соотношение неопределенностей Гейзенберга
- •33.3. Волновая функция и ее статистический смысл
- •33.4 Уравнение Шредингера
- •33.5. Частица в одномерной прямоугольной «потенциальной яме с бесконечно высокими «стенками»
- •33.6. Туннельный эффект
- •Глава 34. Теория атома водорода по бору. Квантовая теория атома водорода
- •34.1. Модель атома Резерфорда-Бора
- •34.2. Постулаты Бора
- •34.3. Спектр атома водорода по Бору
- •Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии (mеυ2/2) и потенциальной энергии в электростатическом поле ядра (-Ze2/4πε0r):
- •34.4. Атом водорода в квантовой механике
- •Решение уравнения Шредингера, т.Е. Математическое описание орбитали, возможно лишь при определенных, дискретных значениях характеристик, получивших название квантовых чисел.
- •Формы орбиталей, соответствующие различным значениям l
- •34.5. Спин электрона
- •34.6. Спектры. Спектральный анализ
- •Глава 35. Элементы зонной теории твердых тел
- •35.1. Кристаллы. Связи между атомами и молекулами в твердых телах
- •35.2. Зоны энергетических уровней электронов в кристалле
- •35.3. Проводники, полупроводники и диэлектрики по зонной теории
- •35.4. Собственная проводимость полупроводников
- •35.5. Уровень Фéрми
- •35.6. Температурная зависимость электропроводности полупроводников
- •35.7. Примесная проводимость
- •35.8. Электронно-дырочный переход
- •35.9. Полупроводниковый диод
- •35.10. Транзистор
- •35.11. Микроэлектроника
- •35.12. Фоторезистор
- •35.13. Терморезистор
- •35.14. Фотодиод
- •35.15. Светодиод
- •35.16. Полупроводниковый лазер
- •35.17. Тензорезистивный эффект
- •35.18. Эффект Зеебека
- •35.19. Эффект Пельтье
- •35.20. Эффект Томсона
- •Глава 36. Строение и свойства атомного ядра
- •36.1. Размер, состав и заряд атомного ядра
- •36.2. Дефект массы и энергия связи ядра
- •36.3. Ядерные силы. Модели ядра
- •36.4. Радиоактивное излучение и его виды
- •36.5. Закон радиоактивного распада. Правила смещения
- •36.6. Законы сохранения при ядерных реакциях
- •36.7. Цепная реакция деления
- •36.8. Ядерная энергетика
- •36.9. Термоядерный синтез
- •36.10. Бытовые источники ионизирующего излучения
- •Литература
30.8. Светимость
Рассмотрим источник
света конечных размеров (светящий
собственным или отраженным светом).
Светимостью
источника называется поверхностная
плотность светового потока, испускаемого
поверхностью во всех направлениях в
пределах телесного угла
.
Если элемент поверхности
испускает световой поток
,
то
.
(30.19)
Для равномерной светимости можно записать:
.
(30.20)
Единица измерения
светимости
.
Аналогично определяется энергетическая светимость
.
(30.21)
Единица энергетической
светимости
.
30.9. Законы освещенности
Фотометрические
измерения базируются на двух законах
освещенности.
1. Освещенность
поверхности точечным источником света
изменяется обратно пропорционально
квадрату расстояния источника от
освещаемой поверхности. Рассмотрим
точечный источник
(см. рис. 30.7), испускающий свет во всех
направлениях. Опишем вокруг источника
концентрические с источником сферы
радиусами
и
.
Очевидно, что световой поток через
участки поверхностей
и
одинаков, так как он распространяется
в одном телесном угле
.
Тогда освещенность участков
и
составит, соответственно,
и
.
Выразив элементы сферических поверхностей
через телесный угол
,
получаем:
.
(30.22)
2. Освещенность,
создаваемая на элементарном участке
поверхности световым потоком, падающим
на него под некоторым углом, пропорциональна
косинусу угла между направлением лучей
и нормалью к поверхности. Рассмотрим
параллельный пучок лучей (см. рис. 29.8),
падающих на участки поверхностей
и
.
На поверхность
лучи падают по нормали, а на поверхность
– под углом
к нормали. Через оба участка проходит
одинаковый световой поток
.
Освещенность первого и второго участков
составит, соответственно,
и
.
Но
,
поэтому,
.
(30.23)
Объединив эти два закона, можно сформулировать основной закон освещенности: освещенность поверхности точечным источником прямо пропорциональна силе света источника, косинусу угла падения лучей и обратно пропорциональна квадрату расстояния от источника до поверхности
.
(30.24)
Расчеты по этой формуле дают достаточно точный результат, если линейные размеры источника не превышают 1/10 расстояния до освещаемой поверхности. Если источником является диск диаметром 50 см, то в точке на нормали к центру диска относительная погрешность в расчетах для расстояния 50 см достигает 25%, для расстояния 2 м она не превышает 1,5%, а для расстояния 5 м уменьшается до 0,25%.
Если источников
несколько, то результирующая освещенность
равняется сумме освещенностей, создаваемых
каждым отдельным источником. Если
источник нельзя рассматривать как
точечный, его поверхность делят на
элементарные участки и, определив
освещенность, создаваемую каждым из
них, по закону
,
интегрируют затем по всей поверхности
источника.
Существуют нормы
освещенности для рабочих мест и помещений.
На столах учебных помещений освещенность
должна быть не меньше 150 лк, для чтения
книг нужна освещенность
,
а для черчения – 200 лк. Для коридоров
достаточной считается освещенность
,
для улиц –
.
Важнейший для
всего живого на Земле источник света –
Солнце создает на верхней границе
атмосферы энергетическую освещенность,
называемую солнечной постоянной –
и освещенность 137 клк. Энергетическая
освещенность, создаваемая на поверхности
Земли прямыми лучами летом в два раза
меньше. Освещенность, создаваемая
прямыми солнечными лучами в полдень на
средней широте местности, составляет
100 клк. Смена времен года на Земле
объясняется изменением угла падения
солнечных лучей на её поверхность. В
северном полушарии наибольшим угол
падения лучей на поверхность Земли
бывает зимой, а наименьшим – летом.
Освещенность на открытом месте при
облачном небе составляет 1000 лк.
Освещенность в светлой комнате вблизи
окна – 100 лк. Для сравнения приведем
освещенность от полной Луны – 0,2 лк
и от ночного неба в безлунную ночь –
0,3 млк. Расстояние от Солнца до Земли
составляет 150 миллионов километров, но
благодаря тому, что сила солнечного
света равняется
,
освещенность, создаваемая Солнцем на
поверхности Земли, так велика.
Для источников,
сила света которых зависит от направления,
иногда пользуются средней
сферической силой света
,
где
– полный световой поток лампы. Отношение
светового потока
электрической лампы к её электрической
мощности
называютсветовой
отдачей
лампы:
.
Например, лампа накаливания мощностью
100 Вт имеет среднюю сферическую силу
света около 100 кд. Полный световой
поток такой лампы
43,14100 кд = 1260 лм,
а световая отдача равняется 12,6 лм/Вт.
Световая отдача ламп дневного света в
несколько раз больше, чем у ламп
накаливания, и достигает 80 лм/Вт. К
тому же срок службы люминесцентных ламп
превышает 10 тыс. часов, тогда как для
ламп накаливания он меньше 1000 часов.
За миллионы лет эволюции человеческий глаз приспособился к солнечному свету, и поэтому желательно, чтобы спектральный состав света лампы был как можно ближе к спектральному составу солнечного света. Этому требованию в наибольшей степени отвечают люминесцентные лампы. Именно поэтому их называют также лампами дневного света. Яркость нити накала электрической лампочки вызывает болевое ощущение в глазу. Для предупреждения этого используют плафоны из молочного стекла и абажуры.
При всех своих преимуществах люминесцентные лампы имеют и ряд недостатков: сложность схемы включения, пульсация светового потока (с частотою 100 Гц), невозможность запуска на морозе (вследствие конденсации ртути), гудение дросселя (вследствие магнитострикции), экологическая опасность (ртуть из разбитой лампы отравляет окружающую среду).
Для того чтобы спектральный состав излучения лампы накаливания был таким, как у Солнца, нужно было бы раскалить её нить до температуры поверхности Солнца, т. е. до 6200 К. но вольфрам – наиболее тугоплавкий из металлов – плавится уже при 3660 К.
Температура, близкая к температуре поверхности Солнца, достигается в дуговом разряде в парах ртути или в ксеноне под давлением около 15 атм. Силу света дуговой лампы можно довести до 10 Мкд. Такие лампы используются в кинопроекторах и прожекторах. Лампы, заполненные парами натрия, отличаются тем, что в них значительная часть излучения (около трети) сконцентрирована в видимой области спектра (две интенсивных желтых линии 589,0 нм и 589,6 нм). Хотя излучение натриевых ламп сильно отличается от привычного для человеческого глаза солнечного света, они используются для освещения автострад, так как их преимуществом является высокая световая отдача, достигающая 140 лм/Вт.